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Introduction
Rheology is defined as the study of the flow of matter. One key physical quantity is the viscosity, which links
the stress to the strain rate. More precisely, if we denote the velocity field of a sample by v (r), then the
second-rank local strain rate tensor E is defined as

E =
1

2

[
∇v + (∇v)

T
]
. (1)

The Cauchy stress tensor T is then linked to the strain rate tensor by the contraction with the fourth-rank
viscosity tensor η [5]

T = 2η : E. (2)

If only simple shear flow is studied, we can define the strain rate (or shear rate) γ̇ as twice the component of
the symmetric strain rate tensor in the plane of shear, and equivalently the shear stress as the component σ of
the stress tensor in the same plane. Then the scalar viscosity η (simply denoted as viscosity in the following) is
simply the ratio of shear stress over shear rate

η =
σ

γ̇
. (3)

When η is a pure constitutive constant, the material associated is called a Newtonian fluid. For more general
materials, called complex fluids, the viscosity depends on the strain rate history. One particular class of complex
fluids is the class of suspensions, constituted of particles in a fluid.

Although Einstein computed in 1906 the viscosity of rigid neutrally-buoyant spheres suspensions in the dilute
regime [2], at this day no generic equation exists to explain the rheology of dense suspensions. At high volume
fraction (also called packing fraction, and defined as the ratio of volumes φ = Vparticles/ [Vparticles + Vfluid]),
one ultimately has to take into account the interaction and friction forces between the particles forming the
suspension.

As these forces becomes relevant, interesting behaviours can appear in the rheology of suspensions. One of
these interesting behaviours is shear thickening, which corresponds to an increase of the viscosity η with the
strain rate γ̇. This particular effect has some spectacular consequences: if the volume fraction is sufficiently
high, one can run across a pool filled with a suspension of cornstarch in water, and yet sink in the same pool if
staying at rest [1]; this is only possible because of a discontinuity of a few orders of magnitude in the function
η (γ̇), a phenomenon called Discontinuous Shear Thickening (DST). At lower packing fraction, one can still
generally observe shear thickening, but with a smooth increase in the viscosity η (γ̇), giving what we called
Continuous Shear Thickening (CST). Recent theoretical work [11] suggests that shear thickening is due both to
friction and finite interparticle repulsions: this repulsion sets a typical stress σc; when the stress σ is below σc,
no frictional contacts are created and the viscosity is low, while above σc, frictional contacts proliferate and the
viscosity becomes high.

Thus shear thickening seems to be a phenomenon relevant only in repulsive suspensions. But as it will
be shown in this work, signatures of shear thickening can also be seen in Large Amplitude Oscillatory Shear
(LAOS) experiments with attractive suspensions, if we accept a slightly modified definition: the mean viscosity
during an oscillation of the stress or the shear rate is increasing with the amplitude of this oscillation. At first
this seems absurd, because attractive suspensions possess a yield stress σy; when σ < σy, the attractive force
cannot be overcome, and the suspension is solid-like, while above σy, the rheology of the suspension follows at
equilibrium this generic law [7]

σ = σy +Kγ̇n, (4)

with n ∈]0, 1[, σy > 0 and K > 0. Therefore the viscosity η = σ/γ̇ is expected to diverge at the yield stress
and decrease with increasing strain rate. This decreasing is called shear thinning, the exact contrary of shear
thickening. In fact, these laws are only valid in static experiments, when a constant shear rate or stress is
applied and equilibrium is reached. In LAOS experiments, where the stress or strain rate is oscillating, the
transient regime plays an essential role, and will be necessary to understand what is happening.

This report presents some experimental aspects linked to these phenomena. In the first part, I will present
measurements of flow curves in shear thickening repulsive suspensions of cornstarch in solutions of water in
glycerol. In the second part, I will explore the rheology of attractive suspensions of cornstarch in oil, with two
types of measurement: LAOS experiment, to see the mean response of a sample submitted to an oscillatory
shear, and shear reversal experiment, to analyse more precisely the transient response.
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Part I

Suspensions with a repulsive force between
particles
In this part, suspensions of cornstarch in a mixture of water and glycerol are studied. It is more challenging to
use pure water, as it evaporates over time and thus changes the volume fraction of a sample. For a similar reason,
pure glycerol is not a good choice, as it captures the water present in the air, and thus also modifies the volume
fraction. By using solutions of water in glycerol, the influence of these two phenomena is limited. I have not
tried to find the exact mass fraction needed to obtain an equilibrium, as it is likely that this equilibrium depends
on the atmospheric conditions in the laboratory, but I have checked that with a ratio of mass mwater/mglycerol of
roughly 0.5, the volume fraction of a suspension of cornstarch in this solution of water in glycerol was changing
of approximately 1 % in 18 h, by measuring the mass of this sample over time. This was deemed acceptable,
as all my experiments with these samples were conducted in less than eight hours. It should also be mentioned
that the high viscosity of the glycerol slows down the sedimentation.

As water and glycerol are polar solvents, each particle of cornstarch possess a surface charge, which implies
the creation of a layer of equal and opposite charge formed with the ions in solution. Thus, a long-range
repulsive force is created between each particles. This mechanism is called the Helmholtz double layer model
[8]. At short range, it is the collective London-Van Der Waals attractive forces between each molecules of the
particles which dominates; this short-range attractive force is called the Hamaker force [6]. Lastly, frictional
forces are present whenever there is a contact between two particles. Although more forces can be taken into
account, these are the essential ingredients needed to understand the following.

The objective of this part is to measure experimentally the flow curve (the ensemble of points (σ, γ̇) charac-
terising a material) of these suspensions, and compare these results with the recent theoretical explanation of
shear thickening with S-shaped curves proposed by Wyart and Cates [11]. In a first section, I will present how
sigmoidal flow curves implies shear thickening, and what do we expect to measure with a given experimental
setup. In a second section, I will present and discuss the results that I have obtained with suspensions of
different volume fractions.

1 Theoretical considerations

1.1 S-shaped flow curves from a crossover of jamming densities
In [11], Wyart And Cates introduce the idea of a crossover between two types of rheology: a low pressure
rheology, where the repulsive force is not overcome and the particles are frictionless (lubrication films don’t
break because of the repulsion), and a high pressure rheology, where the repulsive force is completely overcome
and the particles are purely frictional. Here low pressure and high pressure corresponds to two limit cases: if
we define Pc as the characteristic pressure scale fixed by the repulsive force and P as the particle pressure,
then the frictionless rheology corresponds to p = P/Pc � 1, and the frictional rheology corresponds to p � 1.
These two different regimes possess well-known phenomenological models, with a single dimensionless parameter
I = η0γ̇/P (η0 is the viscosity of the solvent)

φ = Φr,s (I) ;
σ

P
= µr,s (I) . (5)

In this equation and the following, subscript r corresponds to the frictional physics ("rough" particles) and
subscript s corresponds to the frictionless physics ("smooth" particles). At fixed φ, these laws transform in a
quasi-Newtonian scaling P, σ ∼ ηr,sγ̇, with a viscosity diverging at the jamming density φr for the frictional
rheology and φs > φr for the frictionless rheology

ηr,s =
λr,s

(φr,s − φ)
2 , (6)

with λr,s two constants homogeneous to a viscosity. Then, Wyart and Cates show that a crossover between
these two physics is sufficient to obtain CST and DST. This crossover is parametrised by a second dimensionless
parameter, the rescaled pressure p introduced earlier. Based on a microscopic argument and some simplifications,
the following two-parameter model is then proposed

σ

P
= µ(I, p), (7)

P =
λγ̇

(φj(p)− φ)
2 ⇔ φ = Φ(I, p), (8)
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φj(p) = f(p)φr + [1− f(p)]φs. (9)

Here, the p-dependant jamming density φj(p) interpolates the two jamming densities φr,s with the fraction of
frictional contacts f(p) ∈ [0, 1]. If f(p) is assumed to converge quickly (1 − f(p) = o

(
1/
√
p
)
is a sufficient

condition), then sigmoidal curves arise in an interval [φdst, φr] below φr. A sigmoidal (or S-shaped) flow curve
{(σ(s), γ̇(s)) ; s ∈ [0,+∞]} (s is an arbitrary variable parametrizing the curve) is a double-stress curve which
possesses a central part with a negative slope dσ/dγ̇ < 0, and two Newtonian plateaus at low and high stress.
A Newtonian plateau is a part of the curve where the material is Newtonian-like, i.e. where σ(s)/γ̇(s) is locally
constant and positive. Below φdst, the flow curve is single-valuate in the stress, while between φr and φs,
the upper branch of the sigmoid curve disappears. The Figure 1 presents these different cases, obtained for
φr = 0.58, φs = 0.64 and f(p) = 1 − exp (−p). If we assumed as a simplification that µ(I, p) ' µ(φ), then the
flow curve has the same shape at fixed φ as the curve (p, γ̇), and thus Figure 1 gives the different types of flow
curves, modulo a multiplicative factor.

10−2

10−1

100

101

102

10−5 10−4 10−3 10−2 10−1 100

R
es
ca
le
d
pr
es
su
re

P P
c

Rescaled strain rate λγ̇
Pc

φ = 0.51 < φdst
φ = 0.554 = φdst

φ = 0.57 ∈ [φdst, φr]
φ = 0.58 = φr

φ = 0.59 ∈ [φr, φs]

Figure 1: Curves (p, γ̇) obtained for different packing fractions with φr = 0.58, φs = 0.64 and f(p) = 1−exp (−p).
Growing φ corresponds to decreasing γ̇.

It can easily be shown that a linear velocity profile (i.e. constant strain rate) is unstable when dσ/dγ̇ < 0
[7]. Therefore, we need to investigate how a sample with a sigmoidal flow curve responds to an applied shear
stress or shear rate. At fixed shear rate, we expect to observe discontinuous jumps and hysteresis: if we start
from a very low γ̇ and increase it, we will measure a continuous increase of σ until dγ̇/dσ = 0 (the right vertical
tangent of the sigmoidal curve) and then a discontinuous jump followed again by a continuous increase; if we
start from a very high γ̇ and decreases it, we will measure a continuous decrease of σ until dγ̇/dσ = 0 (the left
vertical tangent of the sigmoidal curve) and then a discontinuous jump followed again by a continuous decrease.
This behaviour has been observed experimentally, according to [11]. At fixed stress, the answer is a little more
complex as the central part of the flow curve is unstable; this will be the topic of the next subsection.

1.2 Sigmoidal flow curves and mean stress control
If we try to apply a shear stress σ (s∗) with dσ/dγ̇ (s∗) < 0, we know that the velocity profile associated with
γ̇ (s∗) is unstable. If so, what is the equilibrium state reached by the sample? This situation is somewhat similar
to the liquid-gas transition, where the isotherm (P, V ) can possess a thermodynamically unstable part where
dP/dV > 0; in this case, the stable solution is found by minimizing the free energy, which yields a coexistence
between one low-volume state (the liquid) and one high-volume state (the gas). By analogy, we can try to
construct a state where two different stress states coexist at the same shear rate: one high stress on the upper
branch of the sigmoidal curve, and one low stress on the lower branch. The problem here is that we do not
have a magical tool like the free energy to say which common strain rate will be selected. For the sake of the
demonstration, we will choose an arbitrary strain rate γ̇∗ at which the coexistence happens, but let’s keep in
mind that there is no fixed rule to compute this γ̇∗.

The Figure 2 sketches the coexistence in an ideal situation: the shear plane is (xz) and the mean stress σexp

is applied globally by the upper plate of surface S = WL; periodic boundaries are chosen along the direction
x, and the free surfaces parallel to the shear plane (xz) are supposed to be perfectly flat (no boundary effects).

3



Guilhem Poy

At the coexistence, the experimental measured shear rate is γ̇∗, and the stress reorganises locally in two bands,
with the interface orthogonal to the vorticity direction (the direction of the curl of the velocity field). The size
of these bands, called vorticity bands, is fixed by the imposed mean stress

σexp =
σ+S+ + σ−S−

S
= rσ+ + (1− r)σ−, (10)

where S+ = rLW and S− = (1− r)LW are the surfaces occupied by the two bands.

γ̇

σ

σ+
σexp

σ−
γ̇∗

(1− r)L

rL

W

σ+

σ−

x

z y

Figure 2: Vorticity bands developing during the coexistence interval [σ−, σ+]. The boundaries parallel to (yz)
are periodic, and the boundaries parallel to (xz) are flat interfaces. The mean stress σexp is applied by the
upper plate, while the lower plate stays fixed. x is the velocity direction (the direction of the velocity field),
y is the vorticity direction (the direction of the curl of the velocity field) and z is the gradient direction (the
direction of the gradient of the velocity field)

Obviously, such an ideal setup is not relevant in real experiment. During my internship, I have mostly worked
with a plate-plate geometry mounted on a stress-control rheometer. The Figure 3 represents this geometry: the
mean stress is applied by the rotating upper circular plate, while the lower plate stays fixed; the gap hp can be
set by moving the system {motor; shaft; upper plate} vertically; finally, hatched plates are used to limit wall
slip.

lower hatched steel plate, fixed

sample

upper hatched steel plate, rotating

shaft

motor

rp

hp

Figure 3: The plate-plate geometry used. The motor can move vertically allowing to set the gap hp. The stress
is applied by the rotating upper circular plate.

The main difference with the previous ideal situation is that the shear rate is not constant along the vorticity
direction (radial direction): the strain rate increases linearly from 0 at the center of the plate to a certain value
at the maximal radius r = rp. Thus, if there is a coexistence between two states as before, these states cannot
be pure-stress states, but rather intervals of stresses. I have depicted the expected band structure in the Figure
4.

We need to consider how the stress and the shear rate are applied in this geometry, as these two quantities
are not constant across the sample. What is really applied is the torque Γ of the motor, and what is really
measured is the angular velocity Ω of the upper plate. By integrating the local stress times the radius along
the surface of the upper plate, we obtain the torque

Γ =

∫ rp

0

σ(r)r · 2πrdr. (11)

If we assume that the lower and upper branches of the sigmoidal flow curves are perfect Newtonian plateaus of
viscosities η− and η+, as depicted in Figure 4, then the local stress is expressed as the local stress

σ(r) =

{
η−γ̇o

r
rp
, r < ri

η+γ̇o
r
rp
, r ∈ [ri, rp]

, (12)

4
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γ̇

σ

γ̇i γ̇o

rp

ri

Figure 4: The structure of the vorticity band in the plate-plate geometry. The two degrees of freedom during
the coexistence are the position of the interface and the strain rate at the edge

with ri the radial position of the interface between the two bands and γ̇o the strain rate at the edge of the
sample. By injecting this expression in the equation 11, we obtain

Γ =
πγ̇or

3
p

2

{
η− + (η+ − η−)

[
1−

(
ri

rp

)4
]}

. (13)

The software used to communicate with the rheometer defines in the plate-plate geometry the experimental
stress as

σexp =
2Γ

πr3
p

, (14)

and the experimental strain rate as

γ̇exp =
rpΩ

hp
= γ̇o. (15)

Therefore, we obtain our final expression of the experimental stress

σexp = γ̇exp

{
η− + (η+ − η−)

[
1−

(
ri

rp

)4
]}

. (16)

When there is only the low-stress band (ri = rp), we retrieve the Newtonian scaling σexp = η−γ̇exp, and
when the high-stress band invades most of the sample (ri → 0+), we retrieve the quasi-Newtonian scaling
σexp ' η+γ̇exp (the low-stress band is always present because the strain rate always starts from 0 at the center
of the plate). While approximative (we will see that the lower and upper branches of the flow curves are not
perfectly Newtonian), this equation will be handy to interpret some of the experimental data.

In any case, we can remember the following generic argument: with the ideal situation of the Figure 2,
the only degree of freedom was the common strain rate γ̇∗, while with the plate-plate geometry, we have two
degrees of freedom: the position of the interface ri and the strain rate at the edge γ̇o. For now, this seems like
a complication to interpret the experimental data, but we will see in the next section that in fact, these two
situations should give similar results, at least at the beginning of the coexistence.

2 Measurement of the flow curve

2.1 Experimental setup and protocol
I now present the experimental setup and protocol used to measure experimentally a flow curve. The plate-
plate geometry represented in Figure 3 was mounted on an Advanced Rheometer 2000 (TA Instruments). This
rheometer uses an air bearing to limit any friction in the rotation of the upper plate; a desiccant dryer PNEUDRI
MiDAS (Parker) was used to keep the air dry inside this air bearing. The interface between the rheometer and

5
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the laboratory computer was made with an old version of the closed-source software Rheology Advantage (TA
Instruments v5.2.2). Data coming from this software was parsed and converted to a usable format by a custom
Perl script that I have written at the beginning of my internship, and then processed by Octave scripts to allow
treatment and visualisation of the signals.

To get a functional feedback between the angular velocity and the torque, the rheometer needs to be
calibrated: first the moment of inertia of the air bearing only (i.e. without any shaft and plate mounted on it)
is calibrated by measuring the angular velocity after applying a constant torque, then the moment of inertia of
the system {shaft; upper plate} is calibrated using the same method, and finally the friction of the air bearing
is calibrated by measuring the angular velocity right after stopping a high applied torque. The annexes 1 and
2 describes in detail how these calibrations works.

To convert the torque and angular velocity in respectively stress and strain rate with the equations 14 and
15, the rheometer also needs the values of rp and hp. I have used a circular upper plate of radius rp = 20 mm
and a gap between the two plates of hp = 1 mm. The gap was calibrated using the pressure plate included in
the rheometer below the lower plate: by measuring the pressure on the lower plate while slowly lowering the
upper plate, the rheometer can calibrate precisely the contact between the two plates; once this reference is
known, the gap can be fixed automatically by the software.

The samples were made using distilled water, glycerol from Fisher Chemical (G/0600/17), and cornstarch
from Sigma-Aldrich (S4126). The protocol used is the following: first, a solution of water in glycerol GLW is
made and its density ρglw measured with a density meter DMA 4500 (Anton Paar); each of these solutions was
found to have a density around 1.17 g/m3; to limit the change in density due to the absorption or evaporation
of water, these solutions were used only in the 8 hours following their creation. Then, the suspension is made
by measuring the added mass mcf of cornstarch and mglw of GLW. The volume fraction is finally computed
using

φ =
mcf/ρcf

mcf/ρcf +mglw/ρglw
. (17)

The calibration of the density of the cornstarch is described in detail in annexe 3, and was found to be ρcf =
1.45± 0.004 g/cm3.
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Figure 5: Flow curves obtained when measuring an ascendant sweep immediately after loading the sample in
the geometry. Growing volume fractions correspond to decreasing strain rate. Each point correspond to an
average over the last 6 s of the peak hold, and the error bars corresponds to the minima and maxima of each
peak hold.

The created suspension is then loaded in the gap zone of the geometry, by first spreading the sample on
the lower plate, and then lowering the upper plate to the gap altitude hp. The part of the sample in excess
outside the gap zone is then removed using a spatula (this is very easy to do due to the shear thickening).
The software does not allow much control over the protocol used in an experiment, so I chose the most manual
method available: a series of peak hold were applied at successive stresses. Here, a peak hold is defined as a
measurement of the strain rate when a constant stress is applied. Each of these peak hold lasts 8 s, and 40
points are measured at fixed increments of time during this period; this sample rate is the maximum allowed by
the serial connection without having delay problems. In fact, there is a fast sampling option, but the problem
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with this mode is that during the transfer of the data (∼ 1 min), the stress continues to be applied, and can
destroy the sample quickly when this stress is sufficiently high, as it will be seen in the next subsection. An
ensemble of peak holds associated with increasing stresses (respectively decreasing stresses) will be designated
as ascending sweep (respectively descending sweep). For each peak hold, the experimental stress σexp is simply
the applied stress, the strain rate γ̇exp is estimated as the mean of the last 6 s of the temporal series of measured
strain rates (the 30 last points), and the error bar is computed from the minimum and maximum values of the
same cut temporal series (this allows a quick visualisation of the stability of the signal after that the feedback
has set the stress to the desired value).

2.2 Results
I now present the flow curves obtained for different packing fractions and protocols. To easily interpret the flow
curves in log-log scale in terms of viscosities, it should be kept in mind that a line of slope 1 corresponds to a
Newtonian plateau and the higher this line is, the higher the viscosity is (this follows directly from the relation
log10 [σ] = log10 [η] + log10 [γ̇]).

The Figures 5 and 6 show the very first ascending sweeps measured on samples with different volume
fractions directly after the loading, by respectively plotting σ against γ̇ and η against γ̇. The error bars are
only present in Figure 5, as Figures 5 and 6 are just two different ways of representing the same data. We can
see three different classes of flow curves: the first one, at packing fractions lower than φ∗dst = 0.41± 0.005 (the
first two curves starting from the right), corresponds to CST, with a continuous increase of the viscosity with
the strain rate. The stability of the signal is excellent for each point of the flow curve.

The second type of flow curves is obtained for packing fractions ranging from φ∗dst to φ∗r = 0.425 ± 0.005
(the third curve), and presents one low-viscosity Newtonian plateau, quite stable, one vertically ascending part,
where the stress and viscosity increase at roughly the same strain rate with an important noise, and one high
viscosity Newtonian plateau, slightly noisy.

Finally, the third type of flow curves is obtained for packing fractions greater than φ∗r (the first two curves
starting from the left), and is basically the same as the second class of curves except that there seems to be no
high-viscosity plateau, or at least not at the same stress than the other curves (the Newtonian plateau for the
two first classes is always reached around σexp = 400 Pa).
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Figure 6: Same data as the Figure 5, except that it is the viscosity which is plotted against the strain rate

The data obtained on Figures 5 and 6 are reproducible over different samples if the measurement is done
immediately after the loading and quickly (no longer than ∼ 8 min for the whole ascending sweep). For packing
fraction lower than φ∗r , if the high Newtonian plateau is reached in the first series of peak hold, then things
deteriorate immediately after, and measurements are not reliable. If on the contrary the first ascending sweep
is stopped in the shear thickening regime (the vertical part of the measured flow curve), then the sample
deteriorates only after a few other measurements (typically 3).

This last statement is visible on Figure 7, where successive ascending sweeps were applied on a fresh sample
of volume fraction 0.43, with each ascending sweep stopping at a lower stress 90 Pa. We clearly see the strain
rate becoming very noisy at one point, and decreasing until a mean value is reached around 0.6 s−1. This value
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of mean strain rate is consistent for the first three ascending sweeps made on that sample, but after that, any
measurements were shifted to higher strain rate and became even more noisy.
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Figure 7: Partial flow curves measured with a volume fraction of 0.43. Ascendant sweeps with stresses ranging
from 1 Pa to 90 Pa were successfully measured on the same sample, without reloading between each sweeps.

In Figure 8 I show what happens when we measure a descending sweep immediately after an ascending
sweep. The same behaviour was observed on different samples with different packing fractions between φ∗dst

and φ∗r , and also by changing the maximum stress applied (providing that this stress is in the high Newtonian
regime). This strong hysteresis is somewhat the most disturbing result, and will be analysed in length in the
next subsection.
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Figure 8: The ascending and descending sweeps obtained for a volume fraction of 0.42. The ascending sweep
corresponds to the left curve, the descending sweep corresponds to the right curve

I have not used any imaging techniques, but I can at least provide a basic description of the edge of
the sample. For volume fraction lower than φ∗dst, the interface starts by being a perfect meniscus in the low
Newtonian plateau. During the shear thickening, a periodic wave pattern along the angular direction appears on
the surface. The amplitude of the waves increases with the stress, and ultimately the pattern breaks when the
high-viscosity plateau is reached: the waves are replaced by blobs of dispersion sticking through the interface,
rolling around the edge of the samples.
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For volume fraction between φ∗dst and φ∗r , the interface is stable in the low Newtonian regime, and stays
so until the end of the shear thickening regime. When the high-viscosity plateau is reached (for a stress of
approximately 400 Pa), discrete blobs of sample appear across the edge and the interface can no longer be
defined in a continuous manner after this destabilisation.

Finally, for volume fraction above φ∗r , these blobs are also observed for stresses above 400 Pa, but as the
stress continue to increase, cracks start to appear around 2000 Pa, which could imply wall slip.

2.3 Discussion
Some properties of my results seem to be compatible with the idea of a sigmoidal curve, but caution is needed to
interpret the measured flow curves. For the first type of measured flow curves (below φ∗dst, continuous increase
of σexp with γ̇exp, well-defined high-viscosity plateau), a continuously shear thickening flow curve would indeed
yields a continuous measured flow curve, because the stress and strain rate can increase continuously from the
center of the plate to the edge without having to create any discontinuous bands. However, no explanation has
been found for the periodic pattern appearing on the edge, and why this pattern disappears at higher volume
fraction.

It is more tricky to interpret the second type of flow curves (between φ∗dst and φ∗r , discontinuous increase
of σexp with γ̇exp, well-defined high-viscosity plateau). At low stresses, the stable continuous increase of σexp

with γ̇exp is compatible with a single band exploring the lower branch of a sigmoidal flow curve. However, the
viscosity in this regime is not perfectly constant but increases continuously with the strain rate, which means
the equation 16 is only approximate (the low stress regime is not a perfect Newtonian plateau). After this
stable regime, the experimental strain rate suddenly becomes much more noisy and decreases until a mean
value is reached, yielding a continuous increase of the experimental stress at a fixed strain rate. According
to the approximate equation 16, this is possible with keeping γ̇exp fixed while nucleating a high-stress band
near the edge (ri/rp < 1). At this point, two important remarks should be made concerning the equation 16:
the factor [η+ − η−] is at least one order of magnitude greater than η− (for example at φ ' 0.42, we have
η ' 2.6 Pa · s just before the signal become noisy and η ' 68 Pa · s for the well-defined high viscosity plateau),
and the structure factor

[
1− (ri/rp)

4
]
varies very quickly with the position of the interface between the two

bands ri. These two remarks implies that a little change in ri gives a big change in the measured stress σexp.
For example, if we choose η− ' 2.6 Pa · s and η+ ' 68 Pa · s at φ ' 0.42, we have (η+ − η)/(η+ − η−) = 0.5
for only ri/rp ' 0.84. This means that during at least the first half of the coexistence, the high-stress band is
concentrated on the edge of the sample and is very thin. Finally, the high-viscosity plateau observed would be
compatible by keeping ri fixed while increasing the strain rate γ̇exp. The reproducibility of this plateau across
different samples and the fact that it always begins at the same stress of roughly 400 Pa seem to indicate that
it is not due to an experimental artefact (wall slip or other). However, some gap size effects were found lately
during the redaction of this report (Ben Guy, private communication), which would indicate that this apparent
plateau is not a perfect Newtonian plateau: when the gap size increases, Ben found that the high-viscosity
plateau is shifted to higher viscosities at fixed stress. Nevertheless, the main features of the model of Wyart and
Cates is verified, namely that the high-viscosity plateau always appears at the same stress (which is equivalent
to the pressure scale Pc assuming that the global friction coefficient µ = σ/P does not change much with the
volume fraction; this is a reasonable assumption considering the range of packing fractions studied).

The last type of flow curves (above φr, increase of σexp at fixed γ̇exp, no well-defined high-viscosity plateau)
is the most difficult to interpret. Indeed, the continuous increase of the stress σexp at a mean fixed strain rate
γ̇exp is very similar to the second type of flow curves, but this time there is no high-viscosity plateau around
400 Pa. This is certainly consistent with the fact that the upper branch of the sigmoidal curve disappears in
the model of the previous section, but it does not tell us in this case what the structure of stress inside the
sample is. The increase at fixed strain rate seems to indicate that there is still a band structure in the sample,
but if this is true the origin of the new high-stress branch is unknown. Furthermore, the cracks appearing on
the edge at very high stress would indicate that we have to take into account additional effects.

As for the strong hysteresis observed when measuring successively an ascendant and descendant sweep, this
can be interpreted as the following process: when the stress starts to decrease after the high-viscosity plateau,
γ̇exp decreases and ri/rp increases simultaneously, which yields the smooth decrease observed in Figure 8. This
hysteresis is therefore due to the fact that there is two degrees of freedom γ̇exp and ri: while during the ascendant
sweep, only one variable varies at a time (ri during the shear thickening regime, γ̇exp when the high-viscosity
plateau is reached), during the descendant sweep both variables vary, for an unknown reason. This process only
shows that the hysteresis is not incompatible with a sigmoidal flow curve, but it does not give any physical
meaning for this hysteresis.

As a final note, after discussions with Michiel Hermes and Mike Cates, a possible origin of the irreversible
alteration of samples has been found: the high-stress band corresponds to a high particle pressure and the low-
stress band to a low particle pressure, therefore we should expect a gradient in particle density to form, with
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a high density in the center and a low density at the edge of the plate. This gradient should alter the sample
irreversibly, but it is not very clear how the measured flow curves are altered in the plate-plate geometry.
Ultimately, it would give equal pressure inside the sample, with a frictional high-concentration band and a
frictionless low-concentration band. This gradient banding has apparently been observed by A. Lemaître, but
the only information about that was an abstract get by a private communication (Macroscopic Discontinuous
Shear Thickening vs Local Shear Jamming in Cornstarch). In any case, the transition between vorticity banding
and gradient banding is expected to be complicated, and imaging techniques are certainly needed.

In conclusion, my experimental results do not show any contradictions with the idea of a sigmoidal curve
to explain shear thickening, and verify some of the features of the model developed by Wyart and Cates: two
characteristic volume fractions are found, associated with qualitative change in the measured flow curve; the
high-viscosity plateau, when defined, always appears at the same stress; the increase of the viscosity at fixed
strain rate is compatible with a sigmoidal flow curve assuming stress localisation in bands. Ultimately, imaging
techniques should be used to determine more precisely how the flow evolutes with the stress and the time, which
is one of the future project of the Soft-Matter team of the university of Edinburgh.

Part II

Suspensions with an attractive force between
particles
In this part, suspensions of cornstarch in oil are studied. Contrarily to water and glycerol, there is no ions in
solution in the oil. As a consequence, the particles of cornstarch does not acquire a surface charge and there
is no repulsive force, although there is still the Hamaker attractive force and the friction force. Because of this
dominant short-range attractive force, we expect these suspensions to possess a yield stress σy, characteristic
stress scale above which the suspension can flow with a finite viscosity and below which the viscosity diverges
with the time.

This definition of the yield stress is essential, because below σy, the suspension is never totally jammed,
and continues to flow (more and more slowly). This allows to do LAOS and shear reversal experiments with
a stress below σy, and still measuring an interesting rheological response. The objective of this part is to
present a shear thickening-like behaviour when doing LAOS experiments, and interpret this shear thickening
in terms of shear-reversal and structures. The first section will be dedicated to Large Amplitude Oscillatory
Shear experiments, and the double scaling of the viscosity. The second section will be dedicated to the transient
rheological response during a reversal of the direction of shear, and the interpretation in terms of structures.
This interpretation will be useful to interpret the LAOS results under a more generic framework.

1 Large Amplitude Oscillatory Shear approach
In LAOS experiment, a sample is submitted to a sinusoidal stress or strain of a certain amplitude, which can
be large. Large means that the measured conjugated quantity (stress if strain-control, strain if stress-control)
is not necessarily sinusoidal, i.e. we do not restrain ourselves to the linear regime, where both quantities are
sinusoidal. As stress-control is the mode giving the best feedback with the rheometer that I have used, all
experiments in this section were conducted by imposing a sinusoidal stress of a fixed amplitude σ0 and angular
frequency ω

σ(t) = σ0 sin(ωt). (18)

Once this sinusoidal stress is applied, the strain is measured in function of the time, and yields after a transient
regime a periodic function γ(t) of period 2π/ω and amplitude γ0. Then, the mean elastic modulus is defined as
[3]

G′1 =
ω

πγ2
0

∮
σ(t)γ(t)dt, (19)

and the mean loss modulus as
G′′1 =

1

πγ2
0

∮
σ(t)γ̇(tr)dt. (20)

Therefore, G′1 is characteristic of an Hookean behaviour, where the strain deformation is in phase with the
stress, and G′′1 is characteristic of a viscous behaviour, where the strain rate is in phase with the stress. This
last quantity is often reinterpreted in terms of the mean viscosity η′1 = G′′1/ω. The objective of this section is
to find the scaling of this viscosity with the amplitude of the shear, the frequency, and the volume fraction.
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1.1 Experimental protocol
The same experimental setup of part 1 was used, only the protocol was changed. Two different sources of
cornstarch were used: the same cornstarch as before (S4126, Sigma-Aldrich), and cornstarch from the chain of
supermarket Sainsbury’s. The calibration of the density of these cornstarches (described in the annexe 3) has
given the same results within the precision of the measurement: ρcf = 1.45± 0.004 g/cm3. The samples are
prepared by measuring and mixing a mass mcf of cornstarch and moil of oil; the volume fraction is deduced
from

φ =
mcf/ρcf

mcf/ρcf +moil/ρoil
, (21)

with ρoil = 0.920 g/cm3 measured with the same density meter as before (DMA 4500, Anton Paar).
Once the sample loaded in the geometry and the surplus removed with a spatula, the following protocol is

used with the Rheology Advantage software:

1. A frequency ω is chosen

2. A descendant amplitude sweep is measured, at the angular frequency ω and from the stress amplitude σstart

to the stress amplitude σend. These two values of stress are chosen in order to obtain strain amplitudes
ranging from 10−1 to 102. Each step of the sweep (at one fixed amplitude) consist of a conditioning part
of 5 oscillation cycles, and a sampling part of 5 cycles. A generic parameter of 15 steps per stress decade
is chosen.

3. The mirrored ascendant amplitude sweep, from σend to σstart, is measured using the same generic param-
eters.

4. A new frequency is chosen and we start again from 2.

The frequencies used were ω = 4, 5, 6, 7, 8, 9, 10 rad/s. Although it is possible to get the temporal series of
measured strain and applied stress, the procedure to get them is so horrible (it involves a long process of
selecting each points of a curve, activating obscure options, and make copy/paste via excel) that I preferred to
use the values of G′1 and G′′1 computed by the Rheology Advantage software. The main drawback is that there
is no control over the numerical method used to compute the integrals 19 and 20.

1.2 Results and discussion
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Figure 9: The generic shape of the curves G′1(γ0) and G′′1(γ0). The curves plotted were obtained for a volume
fraction of 0.434 and a frequency of 10 rad/s.

The Figure 9 presents the generic shapes of the curves G′1(γ0) and G′′1(γ0), with γ0 the measured strain
amplitude. This Figure was obtained for a volume fraction of 0.434 and a frequency of 10 rad/s, with different
parameters than the protocol described earlier in order to show the general evolution of the loss modulus. The
precision of the rheometer was not sufficient to observe the linear regime, which seems to happen for very low
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strain deformation. We only see first what seems to be a shear thinning regime, where the loss modulus G′′1
and therefore the viscosity η′1 decrease with the strain amplitude. This regime is followed by a shear thickening
regime, where the loss modulus increases with the strain amplitude. Finally, the loss modulus reaches a plateau
for high strain amplitude. This generic shape defines two characteristic loss moduli: Gmin, defined as the
minimum of the loss modulus between the shear thinning and shear thickening regimes, and Gmax, defined as
the maximum of the loss modulus after the shear thickening regime.

I then measured these two characteristic moduli in function of the frequency and the volume fraction, using
the protocol described in the previous subsection and octave scripts to automatically compute the minimum
and maximum. The Figure 10 presents the values of Gmin obtained for different frequencies at a volume fraction
of 0.451. Gmin is computed from both the ascendant and descendant sweeps. We see that there is a discrepancy
between the two sweeps: I have found that the ascendant sweep is always lower than the descendant sweep,
and that the longer the measurement is, the lower these curves are shifted. This discrepancy is diminished for
lower volume fraction, until the two curves Gmin(ω) collapse on a same line crossing the origin. It was found
that at a given volume fraction, the slopes of linear Least Mean Square (LMS) fits of the two curves Gmin(ω)
were always comparable within the error bar. It was therefore assumed that this common slope is a viscosity
η− characterising a linear relation between Gmin and ω when measuring during a sufficiently long time. If this
assumption is false, then η− can simply be interpreted as a typical value of the frequency-dependant viscosity
Gmin(ω, φ)/ω

η−(φ) = lim
ω→∞

Gmin(ω, φ)

ω
. (22)

While this quantity does not have an immediate physical interpretation, it allows us to get a frequency-
independent viscosity, which will be useful in the following.

Similar observations were found for the maximum of the loss modulus Gmax. The comparable slopes obtained
from the LMS fits of the curves Gmax were used as values of the typical viscosity η+, with

η+(φ) = lim
ω→∞

Gmax(ω, φ)

ω
. (23)
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Figure 10: Values of Gmin, computed from both the ascendant and descendant sweeps, in function of the
frequency ω, for a volume fraction of 0.451. The discrepancy between the two curves diminishes when increasing
the duration of the sweeps, with the curves shifting down towards what seems a common linear relation between
Gmin and ω. At lower volume fraction, this discrepancy is less pronounced for the same duration of sweep

The Figure 11 presents the measured values of η+ and η− in function of the volume fraction φ, along with
LMS fits using the generic divergence law ηi/(1 + φ/φi)

2, with i = 1, 2. Two different jamming densities are
found, similarly to the model of Wyart and Cates presented in the first part. But it should be noted that this
double scaling happens for entirely different reasons: while with attractive suspensions, the crossover is guided
by the number of contacts creating, with repulsive suspensions we don’t have a repulsive force, and therefore
contacts are always creating and destroying, whatever the stress level.

To understand a possible origin of this double scaling and the apparent shear thickening observed in LAOS
experiment, we need to reinterpret these experiments in terms of shear reversal and structures. Indeed, there

12



Guilhem Poy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

V
is
co
si
ty

(P
a
·s
)

Volume fraction φ

η− (experimental)
η− (LMS fit)

η+ (experimental)
η+ (LMS fit)

η− = η1
(1−φ/φ1)2 , with

η1 = 5.38e− 02± 2.47e− 04 Pa · s
φ1 = 0.705± 4.55e− 03

η+ = η2
(1−φ/φ2)2 , with

η2 = 4.73e− 02± 1.41e− 03 Pa · s
φ2 = 0.543± 1.87e− 02

Figure 11: The scaling of η− and η+ in function of the packing fraction φ. The generic divergence law ηi/(1 +
φ/φi)

2 is used to fit the data with the Least Mean Square method, with i = 1, 2.

has been experimental [4] and theoretical [10] reports of a transient regime arising when the direction of shear is
changed in dense suspensions or dry granular material: if a shear reversal is applied after the viscosity reaches a
steady value η∞, then the viscosity changes after and needs a typical strain deformation of a few unities before
returning to its equilibrium value η∞. This property can be interpreted in terms of anisotropy: for a purely
isotropic fluid, the viscosity cannot depend on the direction of shear, because no anisotropy is created; on the
contrary, if an anisotropy develops in one direction during a shear, we can expect a transient regime arising
when changing the direction of shear, because the anisotropy has to change of sign.

As in a LAOS experiment, the direction of shear is constantly changing each half-period, we need first to
understand what is happening during a pure shear reversal at ‖σ‖ fixed in order to interpret the apparent shear
thickening observed. This is the object of the next section, where shear reversal experiments are interpreted in
terms of anisotropy and structures.

2 Shear reversal approach
First, how can we define an anisotropy in a suspension? If we define n as a vector representing a typical
orientation in the fluid at the microscopic, then we can define the macroscopic tensor A as the following spatial
mean over a mesoscopic domain (containing a sufficiently big number of particles) [5]

A = 〈n⊗ n〉 − 1

3
I, (24)

where I is the identity tensor. This symmetric and traceless tensor, somewhat similar to the nematic order
parameter in a liquid crystal, is called fabric tensor (or anisotropy tensor). In the following, we will assume
that n represents the direction between neighbouring particles. For purely isotropic suspensions (very dilute),
〈n ⊗ n〉 = I/3 and therefore the fabric tensor is null. On the contrary, if an anisotropy develops under shear,
it can be connected with a privileged direction n∗, eigenvector associated with the biggest eigenvalue Λ∗ of A.
For dry granular materials [10] and repulsive suspensions [9], this direction has been found to be approximately
equal to the compression direction. We will assume the same behaviour for our attractive suspensions. The
Figure 12 presents a schematic view of the structures associated with this anisotropy, in the form of ideal chains
of forces crossing the samples.

Although the theoretical framework to develop a dissipative model of a viscoplastic suspensions has been
set by Goddard [5], I have not found in the literature any proposition of a microstructure evolution for these
types of suspensions. In this section, the focus will be on the experimental point of view: I will present the
results of my shear reversal experiments with cornstarch in oil, and try to interpret these results with a possible
qualitative microstructure evolution. I have only realised viscosity measurements, but ultimately, imaging
techniques and/or simulations are needed to fully understand the microstructure.
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Figure 12: A simplified view of the structures arising during a shear in a suspension. These structures are
sketched by perfect chains of forces across the samples, in the compression direction.

2.1 Experimental protocol
The same experimental setup as before is used, and samples are prepared as described in the previous section.
Once the sample is loaded in the plate-plate geometry, a pre-shear at a high stress is applied during 1 hour
before doing any measurements. The reason of this is that I have observed that under a shear, the viscosity of
my attractive suspensions decreases continuously over a very long time scale, in agreement with the observation
of Gadala-Maria and Acrivos [4] in suspensions of solid spheres. The viscosity decreases quickly just after the
loading, and it slows down significantly after one hour. Therefore, the pre-shear allows us to have a more stable
viscosity at equilibrium. After this pre-shear, the following protocol is applied:

1. A value of stress σ0 > 0 is chosen.

2. The stress −σ0 is applied during a time ∆t = 10 min, which was found sufficient to reach an equilibrium,
and the strain is measured at the same time. A fast sampling option is chosen, which allows to decrease
the sampling rate in a stepwise fashion from 1000 samples per second initially to 1 sample per second
after 40 seconds.

3. After a software and hardware delay τ < 1 s, the stress σ0 is applied during the same time ∆t, with the
same fast sampling option.

4. A new value of stress σ0 is chosen and we start again from step 2.

In the following, only the strain series measured during each positive creep (step 3, after shear reversal) are
considered. I have checked that these strain series are not affected by the delay between the step 2 and 3: for an
artificial delay τ = 1 min, it was found that the strain series is modified by less than one percent. The origins
of time and strain are fixed immediately after the positive creep begins. This protocol is summarized on Figure
13.

t

σ(t)

−σ0

σ0

∆t

∆t

τ

Figure 13: The stress pattern used to measure the viscosity after a shear reversal. Only the strain measurements
for t > 0 are kept for further analysis. As the strain is defined up to an additive constant, we can choose a null
strain at the beginning of the second creep: γ(t = 0) = 0.
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2.2 Results
The Figure 14 presents the results obtained when using the protocol described above with a sample of volume
fraction φ = 0.48 and with values of stress covering approximately three decades. Three different regimes can
be observed: the first regime, above the yield stress σy ' 14 Pa, is when the strain rate reaches an equilibrium
value after a sufficiently long time, which corresponds to a linear evolution of the strain. The second regime,
between the yield stress σy and a lower typical stress σ′y ' 0.6 Pa, consists in two typical strain plateau. The
first strain plateau is around 10−4, independently of the stress, and the second plateau, starting at 10 just
below σy, is shifting down for lower stress. Finally, the third regime, below σ′y, presents only one strain plateau,
starting around 10−4 just below σ′y and shifting down for lower stress.
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Figure 14: The strain series measured after a shear reversal for different values of stress. Decreasing stresses
correspond to decreasing strain. Above the yield stress σy ' 14 Pa, the strain asymptotically tends to a linear
evolution (the strain rate reaches an equilibrium value), while below the yield stress, the strain seems to tend
to a fixed equilibrium value, or at least evolute very slowly.
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Figure 15: The instantaneous viscosity measured after a shear reversal for three typical stresses. After a long
time, either the viscosity reaches an equilibrium value (above the yield stress) or diverges with the time (below
the yield stress).

Plotting the strain in function of the time is not the best way to see if there is still a flow below the yield
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stress. As an alternate representation of the data of Figure 14, the instantaneous viscosity is plotted in the
Figure 15 for three different stresses in each regime described above. The strain rate has been computed as
the difference quotient of strain/time. Below the yield stress σy (regime 2 and 3), it is confirmed that the
sample doesn’t strictly jammed, but ultimately acquires a viscosity diverging linearly with the time. Another
remarkable feature is the well-defined minimum of the viscosity when the stress is above σ′y (regime 1 and 2).
This minimum corresponds to the steepest slope of the associated strain series in Figure 14 (which is kind of
hard to determine in log-log scale, hence this representation).

For a particular value of stress σ0 > σy and volume fraction φ, I define the viscosity at equilibrium ηeq (σ0, φ)
as the temporal mean of the instantaneous viscosity during the last minute of the creep, and the viscosity at
minimum ηmin (σ0, φ) as the minimum of the instantaneous viscosity, as depicted in Figure 15. I have found
that the typical strain deformation associated with ηmin is roughly independent of the stress σ0 and has a value
of γ ' 0.5.
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Figure 16: ηeq and ηmin in function of the stress σ0 at a packing fraction φ = 0.448. Decreasing φ shifts down
these two curves to lower stresses and viscosities, but the generic shape is kept. The position of the minimum
of the function ηmin (σ0) is used to construct two stress-independent viscosities, η∗− and η∗+
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divergence law as before.
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To see if ηeq and ηmin possess an interesting scaling with respect to the packing fraction, I have measured
these two functions for different values of φ and σ0 > σy. The Figure 16 presents the generic shape of ηeq and
ηmin in function of the stress σ0 at a fixed volume fraction of φ = 0.448. These curves are shifted to lower
stresses and viscosities for lower packing fraction. To extract stress-independent values at fixed volume fraction,
I define the following two viscosities

η∗− (φ) = ηmin (σ∗0 [φ], φ) , (25)

η∗+ (φ) = ηeq (σ∗0 [φ], φ) , (26)

where σ∗0(φ) is the stress at which the function ηmin (σ0, φ) is minimal at fixed φ, as depicted in Figure 16.
Finally, the Figure 17 presents the scaling of η∗− and η∗− in function of the packing fraction φ. Similarly to

the previous section with the scaling of η− and η+, the two viscosities η∗− and η∗+ diverge at two different packing
fractions, respectively φ1 ' 0.615 and φ2 ' 0.512. These two volume fractions are a little lower than the two
found in the LAOS experiment, but it should be noted that the quality of the LMS fits in Figure 16 is not as
good as in Figure 11, and that a pre-shear was systematically applied before the shear reversal experiments,
contrarily to the LAOS experiments.

2.3 Discussion
The similarities between the double scaling of the viscosity in LAOS and shear reversal experiments seem to
indicate that the viscosity before shear thickening η− is linked to the viscosity at the minimum after a shear
reversal ηmin, and that the viscosity after shear thickening η+ is linked to the viscosity at equilibrium ηeq. This
can be understand in terms of typical strain deformations: as the minimum of the viscosity after a shear reversal
always happens for a typical strain deformation of 0.5 (above the yield stress σy) or lower than 0.5 (between
σ′y and σy), we expect that the average viscosity of a LAOS experiment at a typical strain amplitude of 0.5
is dominated by the properties of ηmin. Conversely, if the strain amplitude is sufficiently big γ � 0.5, we can
expect that the viscosity at equilibrium ηeq will be explored during a LAOS cycle.

Now that a very basic link has been established between LAOS and shear reversal experiments, we still have
to interpret the three types of transient regime observed in Figures 14 and 15. I have eventually come with an
interpretation in terms of microstructure and anisotropy after fruitful discussions with Michiel Hermes and Mike
Cates. The first thing that we need to assume is that the dissipation increases when anisotropy have formed in
a material. This can physically be understood by looking at the very simplified representation of the structures
in Figure 12: as the contacts are in majority oriented ’against’ the flow, we can expect that at least the friction
will increase the dissipation in the direction of the flow. Then we can interpret the transient viscosity of regime
1 (above the yield stress σy) in Figure 15 as a destruction/construction process: immediately after the shear
reversal, the viscosity decreases because the structures formed in the other direction are destroying, until a
minimum is reached for a typical strain deformation of 0.5 (all structures destroyed); after this minimum, the
viscosity increases because the structures are reforming in the new direction, thus increasing the dissipation.
Finally, the viscosity at the equilibrium ηeq is reached when all structures have formed in the compression
direction. The Figure 18 resumes this process using the simplified representation of structures. The value
of viscosity immediately after the shear reversal is not very well-defined on my experiments: sometimes it
seems to be roughly the same as ηeq, which would indicate that the viscosity is continuous even if the stress
is ’discontinuous’ (we must take into account the feedback time scale), sometimes it seems to be greater than
ηeq, which would indicate that the bonds between particles (Hamaker attractive force) need to be broken before
destroying the structures. The sampling rate of the rheometer was not sufficiently high to allow more precise
measurement, even by trying to stay as close as possible to the yield stress (maximised time scale).

For the regime 2 (between σ′y and σy), the same interpretation can be kept, with only two differences: as
the maximum accessible strain is lower and lower when decreasing the stress, I expect the structures to be
only partially formed (which would correspond to a lower eigenvalue Λ∗ in the fabric tensor); once these partial
structures have reformed, the stress applied σ ∈

[
σ′y, σy

]
is not high enough to overcome the global friction

forces induced by these structures, and therefore we obtain a creep flow with a viscosity diverging with time.
Finally, for the regime 3 (below σ′y), there is no structures forming or destroying, because of the very small

strain deformation accessible (less than 10−4). In this regime, I expect the jamming to come from the Hamaker
attractive force associated with the typical stress σ′y. As σ < σ′y, this attractive force ultimately prevents the
creation of a steady flow, and yields the same creep flow as regime 2.

Assuming that this interpretation is accurate, we can understand our attractive suspension as a double
yield stress fluid. The first yield stress σ′y is purely set by the Hamaker attractive force, and corresponds to a
maximum strain deformation of roughly 10−4 just below σ′y or lower for lower stresses. The second yield stress
σy is purely set by the friction force arising from the anisotropy in the fluid, and corresponds to a maximum
strain deformation of roughly 0.5 just below σy or lower for lower stresses. With this in mind, we can provide
the following interpretation for the LAOS results: the linear regime at very low amplitudes corresponds to
random contacts across the sample (no anisotropy); the shear-thinning regime corresponds to the progressive
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Figure 18: The creation/destruction process which could explain the transient regime of the viscosity above σy.
For γ < 0.5, the structures are destroying, thus lowering the dissipation, while for γ > 0.5, the structures are
recreating in the other direction, thus increasing the dissipation.

breaking of these contacts as the strain amplitude increases; finally, the shear thickening regime corresponds to
the increasing importance of the structures forming and destroying (to do so, a minimum typical strain of 0.5
is needed, which corresponds to the strain amplitude at the minimum of the loss modulus).

Conclusion
I had the opportunity to explore the rheological properties of two different types of suspensions during this
internship. The first type of suspension, cornstarch in solution of water in glycerol, presents both continuous
and discontinuous shear thickening. The experimental flow curves include some features compatible with the
recent model developed by Wyart and Cates [11], where the shear thickening is explained by a crossover between
a frictionless physics at low stress (the repulsive force between particles is never overcome) and a frictional physics
at high stress (the repulsive force becomes negligible and frictional contacts account for a high dissipation).
These compatible features are the following: discontinuous shear thickening appears at a small range of volume
fraction below a characteristic fraction φr; below φr, the high-viscosity plateau is always reached for a typical
stress of 400 Pa independent of the volume fraction; above φr, no stable high-viscosity plateau is observed; the
discontinuous shear thickening is equivalent to a continuous increase of stress at a fixed strain rate when working
with a mean stress control, a property which can be interpreted with the formation of vorticity bands. However,
some observations could not be interpreted: the deformation of the interface is delayed to higher stress when
the volume fraction switch from the CST regime to the DST regime; an irreversible deformation of samples is
observed when measuring a complete flow curve, from the low-viscosity plateau to the high-viscosity plateau;
the evolution of the stress above φr could not be interpreted, due to visible fracture at the edge of the sample
and the absence of clue for the existence of a high-stress state. Visualization techniques is the next step to
understand these effects, but for this, a new system has to be used as cornstarch is not transparent with confocal
microscopy.

The second type of suspension, cornstarch in oil, presents an equivalent of shear thickening when doing
LAOS experiment: the mean viscosity η′1 is increasing with the strain amplitude γ, which gives two characteristic
viscosities η+,− diverging at two different volume fractions. This property can be interpreted in terms of shear
reversal experiments, as the direction of shear is constantly changing. These experiments have shown that our
suspensions can be understand as a double yield stress material: the first yield stress σ′y is set by the attractive
Hamaker force between particles, and the second yield stress σy > σ′y is set by the friction force between particles
when structures have formed in the compression direction. A typical strain displacement of 0.5 is necessary
for destroying the anisotropic structures after a shear reversal, and the destruction/creation process yields a
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typical viscosity pattern: as the anisotropy accounts for a higher dissipation due to the frictional contacts, the
destruction of structures after a shear reversal is associated with a decrease of the viscosity and the creation of
structures in the other direction is associated with an increase of the viscosity. This pattern defines two typical
viscosities η∗+,− which share with η+,− a similar scaling with the volume fraction. Therefore, the increase of
η′1 in LAOS experiments is understood as an increase of the anisotropy when the strain amplitude is higher
than 0.5 and increases. This interpretation is purely qualitative; imaging techniques and theoretical work are
necessary to improve the understanding of these shear reversal experiments.

Annexes
1 Calibration of the moment of inertia
Let I be the moment of inertia of the rotating part of the setup (for the first step of the calibration, this
corresponds to only the air bearing; for the second step of the calibration, this corresponds to the system {air
bearing; shaft; upper plate}). This rotating part is submitted to a torque Γ coming from the motor, and a
friction ν coming from the air bearing. Let α be the angular displacement of the rotating part. Then, the
angular momentum theorem gives us the evolution equation for this system

I
d2α

dt2
= Γ− ν dα

dt
. (27)

Let us recall that the rheometer can apply an arbitrary Γ, and measure α at any time. To measure I, the
following torque is applied

Γ(t) = Γ0θ(t), (28)

with θ(t) the Heaviside step function. If the initial condition is dα/dt(0) = 0, then the solution of the previous
differential equation can be written

dα

dt
=

Γ0

ν

(
1− exp

[
−νt
I

])
. (29)

For sufficiently low time t� I/ν, the angular velocity is linear in time and does not depend on the friction ν

dα

dt
't�I/ν

Γ0t

I
. (30)

Knowing Γ0 and measuring dα/dt(t), I is therefore easily deduced.

2 Calibration of the friction
The same system as the previous section is considered (moment of inertia I, torque Γ, friction ν and angular
displacement α). The feedback loop between Γ and α is used to impose dα/dt(0) = α̇0, and no torque is applied
for t > 0. Therefore, the solution of the equation 27 for t > 0 can be written as

dα

dt
= α̇0 exp

(
−νt
I

)
. (31)

For sufficiently low time, the angular velocity is linear in time

dα

dt
't�I/ν α̇0

(
1− νt

I

)
. (32)

Measuring dα/dt(t) is therefore sufficient to deduce ν if I has already been calibrated.

3 Calibration of the particle density of the cornstarch
We consider a suspension consisting in a mass mcf of cornstarch occupying a volume Vcf and a mass moil of oil
occupying a volume Voil. The total mass of the suspension is m, the total volume is V . The conservation of
volume allows us to write

1

ρ
=
Vcf + Voil

m
, (33)
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with ρ = m/V the total density of the suspension. Defining ρoil,cf = moil,cf/Voil,cf as the densities of the two
constituents, and using Vcf + Voil = moil/ρoil +mcf/ρcf , the previous equation is modified in

1

ρ
=
moil

m

1

ρoil
+
mcf

m

1

ρcf
, (34)

which is rewritten using the conservation of mass in

1

ρ
=

(
1

ρcf
− 1

ρoil

)
ϕcf +

1

ρoil
, (35)

with ϕcf = mcf/(mcf +moil) the mass fraction of cornstarch.
The equation 35 allows us to easily measure ρoil,cf by measuring the densities of suspensions with different

mass fractions of cornstarch. Experimentally, I have prepared five suspensions of mass fraction 0.334, 0.248,
0.167, 0.0898, and 0 (pure oil), and measured their densities with a density meter DMA 4500 (Anton Paar).
The oil used is sunflower oil from Sainsbury’s, and the cornstarch used comes from Sigma-Aldrich (S4126).
The Figure 19 shows the inverse of the density in function of the mass fraction for these five suspensions,
and a linear LMS fit of these data using equation 35 with the constraint ρoil = ρ (ϕcf = 0). The error of the
instrument is assumed negligible, therefore no error bars are represented. The error on the estimation of ρcf is
computed using the correlation matrix of the LMS fit. I have found ρoil = 0.920 g/cm3 for the sunflower oil and
ρcf = 1.45± 0.004 g/cm3 for the Sigma-Aldrich cornstarch. I have checked that the same values are obtained
with the Sainsbury’s cornstarch partially used in the second part.
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Figure 19: The inverse of the density plotted in function of the mass fraction. The equation 35 is used for the
LMS fit.
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