HEAT-FLUX-DRIVEN ROTATION OF NEMATIC AND CHOLESTERIC TWISTED BIPOLAR DROPLETS

Guilhem Poy^a, Félix Bunel^a, Jordi Ignés-Mullol^{a,b}, Patrick Oswald^a

^aUniv Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France ^bUniversitat de Barcelona, Institute of Nanoscience and Nanotechnology (IN2UB) and department de Química Física, Martí i Franquès 1, 08028, Spain

Reminder on the classical Lehmann effect

Structure of nematic and cholesteric phases

Rotation of banded droplets in a temperature gradient

First observation (Lehmann, 1900^{1}): rotation of the internal texture of cholesteric droplets in coexistence with the isotropic fluid and subjected to a temperature gradient

Banded droplets: two possible orientations

natural light

Oswald and Dequidt² reproduced in 2008 the Lehmann experiment with banded cholesteric droplets.

The rotation disapears at the compensation $point^3$ $(q = 2\pi/P = 0)$, although the phase remains chiral (of symmetry D_{∞}).

Question: Is the rotation due to the chirality of the phase or the chirality of the director field?

New observations with twisted bipolar droplets

Twisted Bipolar Droplets

Structure characterized by:

- director tangent to the surface
- two polar defects
- double twist along the NS axis

Equatorial cut

Equilibrium texture observed in:

- cholesteric droplets with planar anchoring
- nematic droplets with planar anchoring,

Experimental setup

Liquid Crystal Glycerol layer Circulating water

providing that the twist deformation has a negligible energy cost

Mean temperature $T = (T_+ + T_-)/2$ and temperature gradient $G = a (T_+ - T_-)$ are imposed by two circulating baths.

Results with a nematic lyotropic chromonic mixture (water + 33 wt% SSY)

- Achiral phase, with random handedness of the twist inside the droplets
- The sign of the twist fixes the sign of the angular velocity \Rightarrow two senses of rotation
- Angular velocity $\omega = \pm 2\pi/\Theta$ proportional to G

Rotation only due to the twist of the director field

• Akopyan/Zel'dovich thermomechanical torque on the director $\boldsymbol{\Gamma}_{\mathrm{nem}} = \boldsymbol{n} \times \boldsymbol{f}_{\mathrm{nem}}$, with: $oldsymbol{f}_{ ext{nem}} = ar{\xi}_1 ~(
abla \cdot oldsymbol{n}) ~oldsymbol{G}$ $+ ar{\xi}_2 ([
abla imes oldsymbol{n}] \cdot oldsymbol{n}) (oldsymbol{n} imes oldsymbol{G})$ $+ ar{\xi}_3 ([
abla imes oldsymbol{n}] imes oldsymbol{n}] imes oldsymbol{n}) (oldsymbol{n} \cdot oldsymbol{G}),$

Results with a diluted cholesteric mixture (CCN37 + CC)

- Chiral phase, with a positive twist inside the droplets
- Only one sense of rotation
- Angular velocity poportional to the gradient

- New parameter $q = 2\pi/P$ fixes the twist
- Akopyan/Zel'dovich+Leslie thermomechanical torque on the director $\Gamma_{\rm chol} = n \times f_{\rm chol}$, with:

$$oldsymbol{f}_{ ext{chol}} = oldsymbol{f}_{ ext{nem}} +
u oldsymbol{n} imes oldsymbol{G}$$

• Theoretical prediction without backflow⁴: $-rac{\gamma_1 \; \omega \; R}{C} = ar{\xi_1} \; I_1[m{n}] + ar{\xi_2} \; I_2[m{n}] + ar{\xi_3} \; I_3[m{n}]$

Strong anchoring • Period Θ linear in radius $R \Rightarrow I_i$ independent of $R \Rightarrow$

• We computed the values of I_i with a finite element code, and deduced a typical value for the thermomechanical constants:

 $\bar{\xi} \simeq 80 \text{ pN/K}$

qR

• Simplified model $(\bar{\xi}_1 = \bar{\xi}_2 = \bar{\xi}_3 = \bar{\xi})$: $-rac{\gamma_1 \ \omega \ R}{G} =
u \ J_
u[oldsymbol{n}] + ar{\xi} \ q \ J_{\xi}[oldsymbol{n}]$

• We computed the values of J_{ν}, J_{ξ} as a function of qR with a finite element code, and found with a linear regression:

Conclusion

• Good qualitative agreement between the experiment and the thermomechanical model • But much too large values of ν/q and ξ , incompatible with the measured values in the homogeneous phase below the coexistence temperature

- ¹ O. Lehmann, Ann. Phys. **307**, 649 (1900) ² P. Oswald, and A. Dequidt, Phys. Rev. Lett. **100**, 217802 (2008) ³ P. Oswald, Eur. Phys. J. E, **35**, 10 (2012)
- ⁴ J. Ignés-Mullol, G. Poy, and P. Oswald, Phys. Rev. Lett. (to be published)

