Texture of cholesteric droplets: finite element simulations and experiments

Guilhem Poy, Félix Bunel, Patrick Oswald

Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France

Numerical computation of the texture of cholesteric droplets

Theory

<table>
<thead>
<tr>
<th>$T_{coexistence}$</th>
<th>$T_{cholesteric}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cholesteric phase</td>
<td>cholesteric, isotropic phase</td>
</tr>
</tbody>
</table>

- **Unit director field**: $\vec{r}_i = \text{argmin}_{\vec{r}_i} \, F[\vec{r}]$, with $F[\vec{r}] = F_T[\vec{r}] + F_S[\vec{r}] + F_P[\vec{r}]$

- **Frank elastic energy** F_T: $\Psi_{\vec{r}_i} (K_i) - \Psi_{\vec{r}_i} (K_i)$ for $\vec{r}_i = \vec{n}_i$

- **Electric energy** F_E: $-\vec{e} \cdot \vec{E}$

- **Surface energy** F_S: $\gamma(\theta) - W_f(\theta; \gamma)$ when $\theta < 1$

Numerical minimization method

- **Discretization** with Q_i: finite elements: $F(\vec{r}) \rightarrow f(\vec{N})$ with $\vec{N} = \begin{pmatrix} \vec{n}_i \\ \vec{r}_i \end{pmatrix}$

- **Iterative minimization**:
 - $N_{(i+1)}$ verifying $\vec{r}_i \cdot \vec{r}_i = 1$
 - $N_{(i+1)} = P (N_{(i)} + \Delta N)$ where P is the normalization operation $\vec{r}_i \rightarrow \vec{r}_i / |\vec{r}_i|$

- **ΔN** found with the truncated conjugate gradient algorithm (trust region strategy)

Essential properties:

- $f(N_{(i+1)}) < f(N_{(i)})$: the energy always decreases
- Quadratic convergence near the minimum

Measurement of the anchoring energy at the Chol-I interface of twisted bipolar droplets

Structure under electric field

- Competition between the energy of the disclination lines and the bulk twist energy:
 - Partially unwound helix
 - Effect highly dependent on R/α with $\alpha = K_f/W_a$

- **Optical transmission at the droplet center**
 - Intensity under crossed polarizers \bar{p} and \bar{q}: $I(\phi)$, where $\phi = \text{angle}(\bar{a}_1, \bar{p})$
 - Because of the Lehmann effect, the texture rotates at angular velocity $\omega = \Delta T$
 - Only the minimum and the maximum of $I(\phi)$ are kept

- **Spherical shape** as long as $2R$ is smaller than the sample thickness
- **Numerical fit** $l_a \approx 0.8 \ \mu m$ for the mixture CCN-37 + 0.527 % R811

Simulated and experimental images

- Experimental images: Köhler illumination setup
- Simulated images: Jones matrix method

- Rather good but not perfect agreement. Role of the light deviation effect?

Stability analysis of banded and double-twist droplets

Structure of the droplets

- **DT droplets**: rotationally invariant with a $C_\infty NS$ axis
- **ST droplets**: symmetry breaking with a $C_3 NS$ axis

- **Small radius**: DT droplet, big radius: ST droplet
- Yoshieka et al. 2: role of K_4
- Role of l_a?

Numerical study of the transition

- Order parameter $\psi = \frac{1}{2} \int dV \left[\frac{D\Theta}{DO} \right]^2$ where D/D_0 is the variation rate associated with a solid rotation around the NS axis

- **Transition of the second order**
- The critical radius R_c depends on K_4 and l_a

- Yoshieka et al. ansatz 2: $\alpha(r, z) = q(\alpha r + z)\Theta$
 - $\beta(r, z) = \pi/2$

- **Numerical profiles very different from this ansatz**

References

1. G. Poy, F. Bunel, and P. Oswald, Phys. Rev. E. (to be published)