Guiding principles of light in frustrated chiral birefringent systems

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

September 16, 2021
1 Introduction

2 Light propagation in anisotropic media

3 Role of chirality in the non-linear response of a confined cholesteric

4 Interaction between light and topological solitons

5 Summary
Chirality in everyday life

- Chiral object: distinguishable from its mirror image.
- A common example: propeller.

Without chirality, this conversion is not possible.
The cholesteric phase: a chiral anisotropic soft material

- Nematic liquid crystal: no positional order, mean molecular orientation \mathbf{n}
The cholesteric phase: a chiral anisotropic soft material

- Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
The cholesteric phase: a chiral anisotropic soft material

- Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field n.
The cholesteric phase: a chiral anisotropic soft material

- Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field n.
Frustration: confining cholesterics between two plates

- Surface constraint: molecules must be normal to the confining surface

P. J. Ackerman et al., *Scientific Reports* 2 (2012)
Frustration: confining cholesterics between two plates

- Surface constraint: molecules must be normal to the confining surface

- Arbitrary shapes can be written with thread-like structures!

P. J. Ackerman et al., *Scientific Reports* 2 (2012)
Frustration: confining cholesterics inside droplets

Topological zoo of free standing knots

Lasing in a cholesteric droplet: an omnidirectional microscopic coherent light source

M. Humar, *Liquid Crystals* 43 (2016)
Non-linear optical response of liquid crystal systems:

Problematic 1

Role of chirality in the non-linear optical response of a frustrated cholesteric?

Two classes of soft chiral topological solitons in frustrated cholesterics

Problematic 2
Localized and robust chiral birefringent structures ⇒ interesting interaction with light?
Outline

1 Introduction

2 Light propagation in anisotropic media

3 Role of chirality in the non-linear response of a confined cholesteric

4 Interaction between light and topological solitons

5 Summary
Motivations

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
Motivations

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
- Simulation tools for light propagation:
 - Jones method (fast but inaccurate, easy to code)
 - Finite Difference Time Domain (accurate but slow, open-source, complex to use)
 - Other methods (in-house implementation)
Motivations

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
- Simulation tools for light propagation:
 - Jones method (fast but inaccurate, easy to code)
 - Finite Difference Time Domain (accurate but slow, open-source, complex to use)
 - Other methods (in-house implementation)

Need for advanced light propagation code, if possible open-source
First approach: Hamiltonian ray-tracing and energy transport

\[\frac{d\eta}{ds} = \{\eta, \mathcal{H}\} \]
\[\eta \equiv (x, p) \]

First approach: Hamiltonian ray-tracing and energy transport

\[\frac{d\eta}{ds} = \{\eta, \mathcal{H}\} \]
\[\eta \equiv (x, p) \]

\[\mathcal{F}^{(\alpha)} = n_{\text{eff}} \sqrt{q} E \] conserved along a ray

Advantage: intuitive physical interpretation

Light propagation in anisotropic media

Second approach: physics-based splitting of the wave equation

- Wave-equation in anisotropic media: \[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \] \(E_j = 0 \)

G. Poy and S. Žumer, *Optics Express* **28** (2020)
Second approach: physics-based splitting of the wave equation

- Wave-equation in anisotropic media:
 \[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \] \(E_j = 0 \)

- After eliminating \(E_z \) and keeping only forward modes:
 \[i \partial_z \vec{E} = -\mathcal{P} \vec{E} \]
Second approach: physics-based splitting of the wave equation

- Wave-equation in anisotropic media:
 \[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \] \(E_j \) = 0
- After eliminating \(E_z \) and keeping only forward modes:
 \[i \partial_z E_\perp = -\mathcal{P} E_\perp \]

- What’s inside \(\mathcal{P} \)?

\[\text{Phase op. } K \sim k_0^2 \epsilon \]
\[\text{Walkoff op. } W \sim (\epsilon u_z) \otimes \nabla_\perp \]
\[\text{Diffraction op. } D \sim \Delta_\perp \]

Advantage: fast and accurate simulations

G. Poy and S. Žumer, *Optics Express* 28 (2020)
Nemaktis: an open-source package for polarised microscopy

- The open-source package includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation

Nemaktis: an open-source package for polarised microscopy

- The open-source package includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation

- Where to find it: search Nemaktis on github.com or google.

B. Berteloot et al., *Soft Matter* 16 (2020)
Nemaktis: an open-source package for polarised microscopy

- The open-source package includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation

- Where to find it: search Nemaktis on github.com or google.
- Closed-source BPM code for advanced uses: wide-angle beam deflection, non-linear optics, etc.

B. Berteloot et al., Soft Matter 16 (2020)
Role of chirality in the non-linear response of a confined cholesteric

Outline

1. Introduction
2. Light propagation in anisotropic media
3. Role of chirality in the non-linear response of a confined cholesteric
4. Interaction between light and topological solitons
5. Summary
Spatial light solitons in liquid crystals: nematicons

Motivations

Studied systems in the past 20 years:

- Thick samples with planar n
- Thick samples with cholesteric helix
- Thin samples with homeotropic n

What about confined chiral systems? Can we amplify the optical response with chirality?
Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[n, E] = \int_V dV \left[f_F(n, \nabla n) - \frac{\epsilon_0 \epsilon_a |n \cdot E|^2}{4} \right]$$
Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

\[F[n, E] = \int_V dV \left[f_F(n, \nabla n) - \frac{\epsilon_0 \epsilon_a |n \cdot E|^2}{4} \right] \]

Non-linear iterative scheme:

- \(E_{k+1} \): BPM solution with \(\epsilon = \epsilon_{\perp} I + \epsilon_a n_k \otimes n_k \)
- \(n_{k+1} = n_k + \mu \frac{\delta F}{\delta n} [n_k, E_{k+1}] \)
Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

\[
F[n, E] = \int_V dV \left[f_F(n, \nabla n) - \frac{\epsilon_0 \epsilon_a |n \cdot E|^2}{4} \right]
\]

Non-linear iterative scheme:

- \(E_{k+1} \): BPM solution with \(\epsilon = \epsilon_\perp I + \epsilon_a n_k \otimes n_k \)
- \(n_{k+1} = n_k + \mu \frac{\delta F}{\delta n} [n_k, E_{k+1}] \)

Typical running time for a mesh of \(3 \times 10^6 \) points: \(4 \text{ s / step} \)
(Full resolution of Maxwell equations for the same mesh: \(\sim 1 \text{ h} \))
Role of chirality in the non-linear response of a confined cholesteric

Side-view observations

Side slice of beam intensity (simulation):

Side slice of 3PF signal (experiment):
Top-view observations

Top view of the thickness-averaged laser intensity (simulation):

- Linear optical regime
- Non-linear optical regime

Top view of the scattered laser light (experiments):

- Linear optical regime
- Non-linear optical regime
Top-view observations

Top view polarised optical micrograph:

Simulation

Experiment

Side slice of director field

Mid-sample slice of director field
Role of chirality in the non-linear response of a confined cholesteric

Chirality-enhanced non-linear optical response

Chirality-enhanced non-linear optical response

Potential for low-power non-linear optical photonics devices (e.g. active lenses)

Outline

1. Introduction
2. Light propagation in anisotropic media
3. Role of chirality in the non-linear response of a confined cholesteric
4. Interaction between light and topological solitons
5. Summary
Transmission and/or reflection with line-like structure

Reflection of incident extraordinary beam ($\theta_i = 70^\circ$):
Transmission and/or reflection with line-like structure

Transmission of incident extraordinary beam ($\theta_i = 55^\circ$):
Interaction between light and topological solitons

Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]
Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]

- Usual Snell law: \(n \) is the refractive index of an isotropic medium
Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]

- Usual Snell law: \(n \) is the refractive index of an isotropic medium
- In our system, \(n^{(\alpha,m)} \) = effective index of eigenmode \(\{\alpha, m\} \) far from the soliton
 - \(\alpha = e, o \): polarisation state
 - \(m = 1, 2, \ldots \): mode index
Interaction between light and topological solitons

Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]

- Usual Snell law: \(n \) is the refractive index of an isotropic medium
- In our system, \(n^{(\alpha,m)} \) = effective index of eigenmode \(\{\alpha, m\} \) far from the soliton
 - \(\alpha = e, o \): polarization state
 - \(m = 1, 2, \ldots \): mode index

\[\theta^{(\alpha,m)} \] does not depend on the choice of topological soliton!
(but Fresnel coefficients do)
Interaction between light and topological solitons

Comparison with experiments

Small mode index approximation in thick samples:

\[n^{(\alpha,m)} \approx n_\alpha \sqrt{1 - \left(\frac{m}{m_0}\right)^2} \approx n_\alpha \]
Comparison with experiments

Splitting of eigenmode packets (strongly depends on x-profile): $n^{(\alpha,m_1)} \neq n^{(\alpha,m_2)}$
Interaction with point-like topological solitons

Simplification with 2D rays: \(dp_y/dz \approx -(\epsilon_a/2n_0) g \), where \(g \equiv \partial n_z^2/\partial y \)
Light deflection and lensing with pinned torons

A. Hess et al., Physical Review X 10 (2020)
Outline

1 Introduction

2 Light propagation in anisotropic media

3 Role of chirality in the non-linear response of a confined cholesteric

4 Interaction between light and topological solitons

5 Summary
Chirality and soft topological solitons unlocks new possibilities to control the flow of light at the microscopic level
Chirality and soft topological solitons unlocks new possibilities to control the flow of light at the microscopic level

- Chirality-enhanced optical response: towards enriched opto-mechanical interactions
Chirality and soft topological solitons unlocks new possibilities to control the flow of light at the microscopic level

- Chirality-enhanced optical response: towards enriched opto-mechanical interactions
- Matter transforming light, light transforming matter: what happens when we combine everything?
Take-home message

Chirality and soft topological solitons unlocks new possibilities to control the flow of light at the microscopic level

- Chirality-enhanced optical response: towards enriched opto-mechanical interactions
- Matter transforming light, light transforming matter: what happens when we combine everything?

Next step: establishment of a general chirality-enhanced topological optomechanics framework.