Control of the flow of light with soft topological solitons

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

February 17, 2021

Outline

1 Introduction

- 2 Interaction with line-like solitons
- 3 Interaction with point-like solitons

 $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n

- $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.

- $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field \boldsymbol{n} .

- $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field n.

Two classes of soft topological solitons in confined homeotropic samples

• Thin cholesteric layer: unwound background state $\boldsymbol{n}=\boldsymbol{n}_0$

Introduction

Two classes of soft topological solitons in confined homeotropic samples

- Thin cholesteric layer: unwound background state $\boldsymbol{n}=\boldsymbol{n}_0$
- At intermediate sample thickness:

Introduction

Two classes of soft topological solitons in confined homeotropic samples

Localized robust birefringent structures \Rightarrow interesting interaction with light?

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

G. Poy and S. Žumer. Optics Express, 28:24327, 2020

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

• FDTD: out-of-the-question because of huge 3D meshes.

G. Poy and S. Žumer. Optics Express, 28:24327, 2020

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - * Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$

G. Poy and S. Žumer. Optics Express, 28:24327, 2020

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - * Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
 - $\star\,$ After eliminating E_z and keeping only forward modes:

$$i\partial_z oldsymbol{E}_\perp = - oldsymbol{\mathcal{P}} oldsymbol{E}_\perp$$

G. Poy and S. Žumer. Optics Express, 28:24327, 2020

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - * Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
 - \star After eliminating E_z and keeping only forward modes:

$$i\partial_z {m E}_\perp = - {m {\cal P}} {m E}_\perp$$

 \star What's inside $\boldsymbol{\mathcal{P}}$?

Phase op. $\boldsymbol{K} \sim k_0^2 \boldsymbol{\epsilon}$

Walkoff op. $\boldsymbol{W} \sim (\boldsymbol{\epsilon} \, \boldsymbol{u}_z) \otimes \boldsymbol{\nabla}_{\perp}$

Diffraction op. $D \sim \Delta_{\perp}$

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - * Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
 - $\star\,$ After eliminating E_z and keeping only forward modes:

$$i\partial_z oldsymbol{E}_\perp = - oldsymbol{\mathcal{P}} oldsymbol{E}_\perp$$

- Applications:
 - * Open-source code for polarized optical micrograph simulation (google search: Nemaktis)
 - $\star\,$ Closed-source code for wide-angle simulations (or non-linear optics)

G. Poy and S. Žumer. Optics Express, 28:24327, 2020

Outline

1 Introduction

2 Interaction with line-like solitons

3 Interaction with point-like solitons

Transmission and/or reflection

Reflection of incident extraordinary beam ($\theta_i = 70^\circ$):

Transmission and/or reflection

Transmission of incident extraordinary beam ($\theta_i = 55^\circ$):

o-mode

Interaction with line-like solitons

Description with a generalization of Snell's law

From an exact eigenmode decomposition of Maxwell equations:

 $n^{(\alpha,m)}\sin\theta^{(\alpha,m)} = n_i\sin\theta_i$

Description with a generalization of Snell's law

From an exact eigenmode decomposition of Maxwell equations: $n^{(\alpha,m)}\sin\theta^{(\alpha,m)} = n_i\sin\theta_i$

 \bullet Usual Snell law: n is the refractive index of an isotropic medium

Description with a generalization of Snell's law

From an exact eigenmode decomposition of Maxwell equations:

 $n^{(\alpha,m)}\sin\theta^{(\alpha,m)} = n_i\sin\theta_i$

- \bullet Usual Snell law: n is the refractive index of an isotropic medium
- In our system, $n^{(\alpha,m)}$ = effective index of eigenmode $\{\alpha, m\}$ far from the soliton
 - $\star \ \alpha = e, o:$ polarisation state
 - $\star m = 1, 2, \ldots$: mode index

Description with a generalization of Snell's law

From an exact eigenmode decomposition of Maxwell equations:

 $n^{(\alpha,m)}\sin\theta^{(\alpha,m)} = n_i\sin\theta_i$

- \bullet Usual Snell law: n is the refractive index of an isotropic medium
- In our system, $n^{(\alpha,m)}$ = effective index of eigenmode $\{\alpha, m\}$ far from the soliton
 - $\star \ \alpha = e, o:$ polarisation state
 - $\star m = 1, 2, \ldots$: mode index

 $\theta^{(\alpha,m)}$ does not depends on the choice of topological soliton! (but Fresnel coefficients do)

Comparison with experiments

Small mode index approximation in thick samples: $n^{(\alpha,m)} \approx n_{\alpha} \sqrt{1 - (m/m_0)^2} \approx n_{\alpha}$

Comparison with experiments

Splitting of eigenmode packets (strongly depends on x-profile): $n^{(\alpha,m_1)} \neq n^{(\alpha,m_2)}$

Outline

1 Introduction

- 2 Interaction with line-like solitons
- 3 Interaction with point-like solitons

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\bar{s}} = \frac{\partial \mathcal{H}^{(\alpha)}}{\partial \boldsymbol{p}}$$
$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}\bar{s}} = -\frac{\partial \mathcal{H}^{(\alpha)}}{\partial \boldsymbol{r}}$$

G. Poy and S. Žumer. Soft Matter, 15:3659–3670, 2019

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

• Canonical variables $\{r, p\}$: position and momentum of "light bullets".

G. Poy and S. Žumer. Soft Matter, 15:3659–3670, 2019

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

- \bullet Canonical variables $\{r,p\}:$ position and momentum of "light bullets".
- Hamiltonian for ordinary and extraordinary rays:

$$egin{array}{rcl} \mathcal{H}^{(o)} &=& \displaystylerac{|oldsymbol{p}|^2}{2\epsilon_{\perp}} \ \mathcal{H}^{(e)} &=& \displaystylerac{\epsilon_{\perp}|oldsymbol{p}|^2+\epsilon_a\,|oldsymbol{n}(oldsymbol{r})\cdotoldsymbol{p}|^2}{2\epsilon_{\perp}\epsilon_{\parallel}} \end{array}$$

G. Poy and S. Žumer. Soft Matter, 15:3659–3670, 2019

Simplification with 2D rays: $dp_y/dz \approx -(\epsilon_a/2n_0) g$, where $g \equiv \partial n_z^2/\partial y$

Interaction with point-like solitons

Light deflection and lensing with pinned torons

Interaction with point-like solitons

Extension to the nonlinear optical regime with mobile torons

Interaction with point-like solitons

Toron trajectories around 'bouncing' optical soliton

EUTOPIA 3

Outline

1 Introduction

- 2 Interaction with line-like solitons
- 3 Interaction with point-like solitons

A. J. Hess, G. Poy, J.-S. B. Tai, S. Žumer, and I. I. Smalyukh. Physical Review X, 10:031042, 2020

• Topological protection \Rightarrow robust to external perturbation

- Topological protection \Rightarrow robust to external perturbation
- $\bullet\,$ Order parameter space fully covered $\Rightarrow\,$ maximum index contrast

- Topological protection \Rightarrow robust to external perturbation
- $\bullet\,$ Order parameter space fully covered $\Rightarrow\,$ maximum index contrast
- Can be easily created or tuned with external fields

- Topological protection \Rightarrow robust to external perturbation
- Order parameter space fully covered \Rightarrow maximum index contrast
- Can be easily created or tuned with external fields
- Modeling techniques: Snell law, ray-tracing, beam propagation.

- Topological protection \Rightarrow robust to external perturbation
- Order parameter space fully covered \Rightarrow maximum index contrast
- Can be easily created or tuned with external fields
- Modeling techniques: Snell law, ray-tracing, beam propagation.
- Applications: logical gates, guided self-assembly

Summary

Avertisement

IMPACT FACTOR 2.404

an Open Access Journal by MDPI

Realization and Application of Topological Defect Patterns in Soft and Living Matter

Guest Editors Dr. Simon Čopar, Dr. Guilhem Poy, Prof. Dr. Anupam Sengupta

Deadline

01 June 2021

mdpi.com/si/60078

EUTOPIA 3

Thank you for your attention!

Summary

Total internal reflection can be bypassed by "sliping" under the CF's defects:

