Control of the flow of light with soft topological solitons

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

February 17, 2021
Outline

1 Introduction

2 Interaction with line-like solitons

3 Interaction with point-like solitons

4 Summary
The cholesteric phase

- Nematic liquid crystal: no positional order, mean molecular orientation \mathbf{n}
The cholesteric phase

- Nematic liquid crystal: no positional order, mean molecular orientation \mathbf{n}
- Nematic phase + chiral molecules: cholesteric phase.
The cholesteric phase

- Nematic liquid crystal: no positional order, mean molecular orientation \(n \)
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field \(n \).
The cholesteric phase

- Nematic liquid crystal: no positional order, mean molecular orientation \mathbf{n}
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field \mathbf{n}.

T_{sol} T_{liq} T

cholesteric phase coexistence isotropic phase
Two classes of soft topological solitons in confined homeotropic samples

- Thin cholesteric layer: unwound background state $n = n_0$
Two classes of soft topological solitons in confined homeotropic samples

- Thin cholesteric layer: unwound background state $n = n_0$
- At intermediate sample thickness:

(a) n_0
(b) n_0
(c) n_0
(d) n_0
Two classes of soft topological solitons in confined homeotropic samples

Localized robust birefringent structures \Rightarrow interesting interaction with light?
Light propagation tools in birefringent media

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
Light propagation tools in birefringent media

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - Wave-equation in anisotropic media: \[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \] \[E_j = 0 \]

Applications:
- Open-source code for polarized optical micrograph simulation (google search: Nemaktis)
- Closed-source code for wide-angle simulations (or non-linear optics)

Light propagation tools in birefringent media

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - Wave-equation in anisotropic media: \[
 \left[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \right] E_j = 0
 \]
 - After eliminating E_z and keeping only forward modes:
 \[
 i \partial_z E_\perp = -\mathcal{P} E_\perp
 \]

Light propagation tools in birefringent media

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - Wave-equation in anisotropic media: \[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \] \[E_j = 0 \]
 - After eliminating \(E_z \) and keeping only forward modes:
 \[i \partial_z E_\perp = -\mathcal{P} E_\perp \]

- What’s inside \(\mathcal{P} \)?

Phase op. \(K \sim k_0^2 \epsilon \)
Walkoff op. \(W \sim (\epsilon u_z) \otimes \nabla_\perp \)
Diffraction op. \(D \sim \Delta_\perp \)
Introduction

Light propagation tools in birefringent media

Experimental work in the group of Prof. Smalyukh, modeling work in Ljubljana.

- FDTD: out-of-the-question because of huge 3D meshes.
- Custom-built beam propagation code:
 - Wave-equation in anisotropic media: \[
 \partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij} \] \[E_j = 0\]
 - After eliminating \(E_z\) and keeping only forward modes:
 \[
 i \partial_z E_\perp = -\mathcal{P} E_\perp
 \]

- Applications:
 - Open-source code for polarized optical micrograph simulation (google search: Nemaktis)
 - Closed-source code for wide-angle simulations (or non-linear optics)

Transmission and/or reflection

Reflection of incident extraordinary beam ($\theta_i = 70^\circ$):
Transmission and/or reflection

Transmission of incident extraordinary beam ($\theta_i = 55^\circ$):
Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]
Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]

- Usual Snell law: \(n \) is the refractive index of an isotropic medium

\(\theta^{(\alpha,m)} \) does not depend on the choice of topological soliton! (but Fresnel coefficients do)
Interaction with line-like solitons

Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n(\alpha,m) \sin \theta(\alpha,m) = n_i \sin \theta_i \]

- Usual Snell law: \(n \) is the refractive index of an isotropic medium
- In our system, \(n(\alpha,m) \) = effective index of eigenmode \(\{\alpha,m\} \) far from the soliton
 - \(\alpha = e, o \): polarisation state
 - \(m = 1, 2, \ldots \): mode index

\[\begin{array}{c}
\text{Soliton} \\
\text{Background}
\end{array} \]

\[k_i \]

\[n = n_0 \]

\[x \]

\[y \]

\[z \]

\[+ + + + \cdots \]
Interaction with line-like solitons

Description with a generalization of Snell’s law

From an exact eigenmode decomposition of Maxwell equations:

\[n^{(\alpha,m)} \sin \theta^{(\alpha,m)} = n_i \sin \theta_i \]

- Usual Snell law: \(n \) is the refractive index of an isotropic medium
- In our system, \(n^{(\alpha,m)} \) = effective index of eigenmode \(\{\alpha, m\} \) far from the soliton
 - \(\alpha = e, o \): polarisation state
 - \(m = 1, 2, \ldots \): mode index

\(\theta^{(\alpha,m)} \) does not depend on the choice of topological soliton! (but Fresnel coefficients do)
Interaction with line-like solitons

Comparison with experiments

Small mode index approximation in thick samples: \(n^{(\alpha,m)} \approx n_\alpha \sqrt{1 - (m/m_0)^2} \approx n_\alpha \)
Comparison with experiments

Splitting of eigenmode packets (strongly depends on x-profile): $n^{(\alpha,m_1)} \neq n^{(\alpha,m_2)}$
Outline

1 Introduction

2 Interaction with line-like solitons

3 Interaction with point-like solitons

4 Summary
Ray-tracing description

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

\[
\frac{dr}{ds} = \frac{\partial H^{(\alpha)}}{\partial p} \quad \frac{dp}{ds} = -\frac{\partial H^{(\alpha)}}{\partial r}
\]
Ray-tracing description

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

\[
\begin{align*}
\frac{dr}{ds} &= \frac{\partial H^{(\alpha)}}{\partial p} \\
\frac{dp}{ds} &= -\frac{\partial H^{(\alpha)}}{\partial r}
\end{align*}
\]

- Canonical variables \(\{r, p\} \): position and momentum of "light bullets".

Ray-tracing description

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

\[
\begin{align*}
\frac{dr}{ds} &= \frac{\partial \mathcal{H}^{(\alpha)}}{\partial p} \\
\frac{dp}{ds} &= -\frac{\partial \mathcal{H}^{(\alpha)}}{\partial r}
\end{align*}
\]

- Canonical variables \(\{r, p\} \): position and momentum of "light bullets".
- Hamiltonian for ordinary and extraordinary rays:

\[
\begin{align*}
\mathcal{H}^{(o)} &= \frac{|p|^2}{2\epsilon_\perp} \\
\mathcal{H}^{(e)} &= \frac{\epsilon_\perp |p|^2 + \epsilon_a |n(r) \cdot p|^2}{2\epsilon_\perp \epsilon_\parallel}
\end{align*}
\]

Ray-tracing description

Simplification with 2D rays: $\frac{dp_y}{dz} \approx - \left(\epsilon_a / 2n_0 \right) g$, where $g \equiv \partial n_x^2 / \partial y$
Interaction with point-like solitons

Light deflection and lensing with pinned torons
Extension to the nonlinear optical regime with mobile torons

\[\Delta p \equiv p_f - p_i \]

\[\delta n^{(TS)} \neq 0 \]

\[|\delta n^{(TS)}| \geq 0.05 \]

\[|\delta n^{(EM)}| > 0 \]
Interaction with point-like solitons

Toron trajectories around ‘bouncing’ optical soliton
Outline

1 Introduction
2 Interaction with line-like solitons
3 Interaction with point-like solitons
4 Summary
Soft topological solitons can reliably control the flow of light at the microscopic level.
Soft topological solitons can reliably control the flow of light at the microscopic level

- Topological protection \Rightarrow robust to external perturbation
Soft topological solitons can reliably control the flow of light at the microscopic level

- Topological protection \Rightarrow robust to external perturbation
- Order parameter space fully covered \Rightarrow maximum index contrast

Take-home message

Soft topological solitons can reliably control the flow of light at the microscopic level

- Topological protection \Rightarrow robust to external perturbation
- Order parameter space fully covered \Rightarrow maximum index contrast
- Can be easily created or tuned with external fields

Take-home message

Soft topological solitons can reliably control the flow of light at the microscopic level

- Topological protection \Rightarrow robust to external perturbation
- Order parameter space fully covered \Rightarrow maximum index contrast
- Can be easily created or tuned with external fields
- Modeling techniques: Snell law, ray-tracing, beam propagation.

Soft topological solitons can reliably control the flow of light at the microscopic level

- Topological protection \Rightarrow robust to external perturbation
- Order parameter space fully covered \Rightarrow maximum index contrast
- Can be easily created or tuned with external fields
- Modeling techniques: Snell law, ray-tracing, beam propagation.
- Applications: logical gates, guided self-assembly
Realization and Application of Topological Defect Patterns in Soft and Living Matter

Guest Editors
Dr. Simon Ćopor, Dr. Guilhem Poy, Prof. Dr. Anupam Sengupta

Deadline
01 June 2021

mdpi.com/si/60078
Thank you for your attention!
Total internal reflection can be bypassed by "sliping" under the CF’s defects:

![Diagram showing total internal reflection bypass](image)