Optical solitons and chirality-enhanced nonlinear optical response in frustrated liquid crystals

Guilhem Poy

Faculty of Mathematics and Physics, Ljubljana

September 27, 2021

Outline

1 Introduction

- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- Theoretical results for planar cells
- **6** Conclusion

Motivations

Spatial light solitons in liquid crystals: nematicons

Increasing beam power

G. Assanto. Nematicons. John Wiley & Sons, 2013

Motivations

Studied systems in the past 20 years:

Introduction

Motivations

Studied systems in the past 20 years:

What about confined chiral systems? Can we amplify the optical response with chirality?

Outline

1 Introduction

2 Previous study with homeotropic cells

3 Simulations of chiral optical solitons in planar cells

Interpretion of the second second

6 Conclusion

Previous study with homeotropic cells

Our first approach: unwound cholesteric with homeotropic anchoring

Side slice of beam intensity (simulation):

Side slice of 3PF signal (experiment):

$$= 1 \\ - 0.5 I_{3PF}$$

G. Poy et al., Physical Review Letters 125 (2020)

Previous study with homeotropic cells

Our first approach: unwound cholesteric with homeotropic anchoring

Top view of the thickness-averaged laser intensity (simulation):

Linear optical regime

Non-linear optical regime

Top view of the scattered laser light (experiments):

Linear optical regime

Non-linear optical regime

G. Poy et al., Physical Review Letters 125 (2020)

• Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.

G. Poy et al., Physical Review Letters 125 (2020)

- \bullet Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.
- Basic mechanism: for a given optical power, the amplitude of molecular reorientation is boosted by the chiral molecules.

G. Poy et al., Physical Review Letters 125 (2020)

- Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.
- Basic mechanism: for a given optical power, the amplitude of molecular reorientation is boosted by the chiral molecules.
- Advanced theoretical analysis very difficult because of the complex bouncing pattern of the beam.

G. Poy et al., Physical Review Letters 125 (2020)

- Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.
- Basic mechanism: for a given optical power, the amplitude of molecular reorientation is boosted by the chiral molecules.
- Advanced theoretical analysis very difficult because of the complex bouncing pattern of the beam.

G. Poy et al., Physical Review Letters 125 (2020)

Previous study with homeotropic cells

New approach: unwound cholesteric with planar anchoring

- Control parameter: spontaneous twist $q = 2\pi/P$, with P periodicity of cholesteric helix.
- When $q < q_c \approx \pi/h$, the unwound cholesteric is stable.

Previous study with homeotropic cells

New approach: unwound cholesteric with planar anchoring

- Control parameter: spontaneous twist $q = 2\pi/P$, with P periodicity of cholesteric helix.
- When $q < q_c \approx \pi/h$, the unwound cholesteric is stable.

Can we get additional insight in this simpler sample geometry?

Outline

1 Introduction

- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- Interpretical results for planar cells

6 Conclusion

Simulated self-focused intensity profiles

Vanishingly small power

 $P = 3.76 \ mW$, achiral sample $(q/q_c = 0)$

 $P = 3.76 \ mW$, chiral sample $(q/q_c = 0.9)$

Waist evolution and chirality-enhancement effect

Amplification of nonlinear optical response due to chirality: almost $\times 3$ (higher than in homeotropic cells)

Transverse cross-section of the director field

Achiral sample $(q/q_c = 0)$

Chiral sample $(q/q_c = 0.9)$

Outline

1 Introduction

- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- Theoretical results for planar cells

6 Conclusion

(1+1)D effective nonlinear beam propagation model

Light fully confined by the plates of the sample: $A_y \approx A(y, z)\psi(x, z) \exp \{i p \cdot R\}$ Waveguide mode along x

- Amplitude profile along y

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

(1+1)D effective nonlinear beam propagation model

Light fully confined by the plates of the sample:

 $A_y \approx A(y, z)\psi(x, z) \exp \{i p \cdot R\}$ Waveguide mode along xAmplitude profile along y

• Simplified *x*-averaged wave equation:

$$\left[2ip_z\partial_Z + \partial_Y^2 + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \partial_Y^2$: diffraction.
- * Γ_{eff} : effective nonlinear photonics potential.

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

(1+1)D effective nonlinear beam propagation model

Light fully confined by the plates of the sample:

 $A_y \approx A(y, z)\psi(x, z) \exp \{i p \cdot \mathbf{R}\}$ Waveguide mode along xAmplitude profile along y

• Simplified *x*-averaged wave equation:

$$\left[2ip_z\partial_Z + \partial_Y^2 + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \partial_Y^2$: diffraction.
- \star $\Gamma_{\rm eff}:$ effective nonlinear photonics potential.
- In Fourier space: $\tilde{\Gamma}_{\text{eff}} = \tilde{G}_{\text{eff}} \tilde{\mathcal{J}}_{\text{eff}}$, with \mathcal{J}_{eff} the rescaled intensity profile associated with A.

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

(1+1)D effective nonlinear beam propagation model

Light fully confined by the plates of the sample:

 $A_y \approx A(y, z)\psi(x, z) \exp \{i p \cdot \mathbf{R}\}$ Waveguide mode along xAmplitude profile along y

• Simplified *x*-averaged wave equation:

$$\left[2ip_z\partial_Z + \frac{\partial_Y^2}{\partial_Y} + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \partial_Y^2$: diffraction.
- \star $\Gamma_{\rm eff}:$ effective nonlinear photonics potential.
- In Fourier space: $\tilde{\Gamma}_{\text{eff}} = \tilde{G}_{\text{eff}} \tilde{\mathcal{J}}_{\text{eff}}$, with \mathcal{J}_{eff} the rescaled intensity profile associated with A.
- Effective Green function of the LC's reponse: $\tilde{G}_{\text{eff}} \sim \frac{|\mathbf{k}|^2}{|\mathbf{k}|^4 \eta^2 q^2 k_y^2}$ increases when q increases.

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

(1+1)D effective nonlinear beam propagation model

Light fully confined by the plates of the sample:

 $A_y \approx A(y, z)\psi(x, z) \exp \{i p \cdot \mathbf{R}\}$ Waveguide mode along xAmplitude profile along y

• Simplified *x*-averaged wave equation:

$$\left[2ip_z\partial_Z+\partial_Y^2+rac{2P}{P_0}\Gamma_{ ext{eff}}
ight]A=0$$

- $\star \partial_Y^2$: diffraction.
- \star $\Gamma_{\rm eff}:$ effective nonlinear photonics potential.
- In Fourier space: $\tilde{\Gamma}_{\text{eff}} = \tilde{G}_{\text{eff}} \tilde{\mathcal{J}}_{\text{eff}}$, with \mathcal{J}_{eff} the rescaled intensity profile associated with A.
- Effective Green function of the LC's reponse: $\tilde{G}_{\text{eff}} \sim \frac{|\mathbf{k}|^2}{|\mathbf{k}|^4 \eta^2 q^2 k_y^2}$ increases when q increases.
- Estimation of the power of a fundamental soliton with waist ω_0 :

$$P = \frac{P_0}{k_0^2 \omega_0^4 \left[-\Gamma_{\rm eff}''(0) \right]}$$

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

Outline

Introduction

- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- Theoretical results for planar cells

6 Conclusion

Take-home message

Chirality allows to boost the response of frustrated liquid crystals to external fields, and therefore to generate optical solitons at a lower power than in achiral media.

- Experimental implementation: need to avoid π -twisted domains, only keeping the unwound phase inside the LC sample.
- Beyond solitonic science: chirality-enhanced optomechanical manipulation of LC patterns with laser, relevance in spin-orbit interactions, etc.

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

Thank you for your attention!