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Introduction

Motivations

Spatial light solitons in liquid crystals: nematicons

Increasing beam power

G. Assanto. Nematicons. John Wiley & Sons, 2013
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What about confined chiral systems? Can we amplify the optical response with chirality?
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Previous study with homeotropic cells

Our first approach: unwound cholesteric with homeotropic anchoring
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G. Poy et al., Physical Review Letters 125 (2020)
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Previous study with homeotropic cells

Our first approach: unwound cholesteric with homeotropic anchoring
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Top view of the thickness-averaged laser intensity (simulation):

Linear optical regime Non-linear optical regime

Top view of the scattered laser light (experiments):

Linear optical regime Non-linear optical regime

G. Poy et al., Physical Review Letters 125 (2020)
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Previous study with homeotropic cells

Summary of first approach

Possibility of generating solitons at a power ∼ 2 times smaller than in achiral media.

G. Poy et al., Physical Review Letters 125 (2020)
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Previous study with homeotropic cells

New approach: unwound cholesteric with planar anchoring
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Control parameter: spontaneous twist q = 2π/P , with P periodicity of cholesteric helix.

When q < qc ≈ π/h, the unwound cholesteric is stable.
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Control parameter: spontaneous twist q = 2π/P , with P periodicity of cholesteric helix.

When q < qc ≈ π/h, the unwound cholesteric is stable.

Can we get additional insight in this simpler sample geometry?
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Simulations of chiral optical solitons in planar cells

Simulated self-focused intensity profiles

Vanishingly small power

P = 3.76 mW , achiral sample (q/qc = 0)

P = 3.76 mW , chiral sample (q/qc = 0.9)
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Simulations of chiral optical solitons in planar cells

Waist evolution and chirality-enhancement effect
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Amplification of nonlinear optical response due to chirality: almost ×3 (higher than in homeotropic cells)
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Simulations of chiral optical solitons in planar cells

Transverse cross-section of the director field

Achiral sample (q/qc = 0)

Chiral sample (q/qc = 0.9)
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Theoretical results for planar cells

(1+1)D effective nonlinear beam propagation model
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Light fully confined by the plates of the sample:

Ay ≈ A(y, z)ψ(x, z) exp {ip ·R}

Amplitude profile along y

Waveguide mode along x

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)
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(1+1)D effective nonlinear beam propagation model
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In Fourier space: Γ̃eff = G̃eff J̃eff , with Jeff the rescaled intensity profile associated with A.

Effective Green function of the LC’s reponse: G̃eff ∼
|k|2

|k|4−η2q2k2
y

increases when q increases.

Estimation of the power of a fundamental soliton with waist ω0:

P =
P0

k2
0
ω4
0
[−Γ′′

eff
(0)]

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)

G. Poy OLC 2021 27/09/2021 9 / 10



Conclusion

Outline

1 Introduction

2 Previous study with homeotropic cells

3 Simulations of chiral optical solitons in planar cells

4 Theoretical results for planar cells

5 Conclusion

G. Poy OLC 2021 27/09/2021 9 / 10



Conclusion

Concluding remarks

Take-home message

Chirality allows to boost the response of frustrated liquid crystals to external fields, and therefore to generate
optical solitons at a lower power than in achiral media.

Experimental implementation: need to avoid π-twisted domains, only keeping the unwound phase
inside the LC sample.

Beyond solitonic science: chirality-enhanced optomechanical manipulation of LC patterns with laser,
relevance in spin-orbit interactions, etc.

G. Poy et al., Proc. SPIE 11807, Liquid Crystals XXV (2021)
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Conclusion

Thank you for your attention!
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