Light simulation approaches in birefringent materials

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

Septembre 11, 2021

A ZA RAZISKOVALNO DEJAVNOST

• Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
- Simulation tools for light propagation:
 - \star Jones method (fast but inacurate, easy to code)
 - * Finite Difference Time Domain (acurate but slow, open-source, complex to use)
 - * Other methods (in-house implementation)

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
- Simulation tools for light propagation:
 - \star Jones method (fast but inacurate, easy to code)
 - * Finite Difference Time Domain (acurate but slow, open-source, complex to use)
 - $\star\,$ Other methods (in-house implementation)

Nemaktis: an easy-to-use open-source platform including tools for light propagation in arbitrary birefringent media.

2 Operator-based simulation methods

3 Conclusion

Ray-tracing description

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}\bar{s}} = \frac{\partial \mathcal{H}^{(\alpha)}}{\partial \boldsymbol{p}}$$
$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}\bar{s}} = -\frac{\partial \mathcal{H}^{(\alpha)}}{\partial \boldsymbol{r}}$$

G. Poy and S. Žumer, Soft Matter 15 (2019)

Ray-tracing description

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

 \bullet Canonical variables $\{r,p\}$: position and momentum of "light bullets".

G. Poy and S. Žumer, Soft Matter 15 (2019)

Ray-tracing description

Hamiltonian reformulation of century-old Fermat-Grandjean theory:

$rac{\mathrm{d}m{r}}{\mathrm{d}ar{s}}$	=	$rac{\partial \mathcal{H}^{(lpha)}}{\partial oldsymbol{p}}$
$rac{\mathrm{d} oldsymbol{p}}{\mathrm{d} ar{s}}$	=	$-rac{\partial \mathcal{H}^{(lpha)}}{\partial m{r}}$

- \bullet Canonical variables $\{r,p\}:$ position and momentum of "light bullets".
- Hamiltonian for ordinary and extraordinary rays:

$$egin{array}{rcl} \mathcal{H}^{(o)} &=& \displaystylerac{|oldsymbol{p}|^2}{2\epsilon_{\perp}} \ \mathcal{H}^{(e)} &=& \displaystylerac{\epsilon_{\perp}|oldsymbol{p}|^2+\epsilon_a\,|oldsymbol{n}(oldsymbol{r})\cdotoldsymbol{p}|^2}{2\epsilon_{\perp}\epsilon_{\parallel}} \end{array}$$

G. Poy and S. Žumer, Soft Matter 15 (2019)

Energy transport and conservation law

G. Poy and S. Žumer, Soft Matter 15 (2019)

Energy transport and conservation law

G. Poy and S. Žumer, Soft Matter 15 (2019)

Application to bright-field microscopy

 \exp .

sim.

Application to bright-field microscopy

exp.

sim.

Advantage: access to ray geometry and natural eigenmodes Disadvantage: Mauguin regime, caustics

Application to light-matter interactions with torons

Simplification with 2D rays: $dp_y/dz \approx -(\epsilon_a/2n_0) g$, where $g \equiv \partial n_z^2/\partial y$

A. Hess et al., Physical Review X 10 (2020)

Application to light-matter interactions with torons

2 Operator-based simulation methods

3 Conclusion

Operator-based simulation methods

Physics-based splitting of the wave equation

• Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$

G. Poy and S. Žumer, Optics Express 28 (2020)

Physics-based splitting of the wave equation

- Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
- After eliminating E_z and keeping only forward modes:

$$i\partial_z oldsymbol{E}_\perp = - oldsymbol{\mathcal{P}} oldsymbol{E}_\perp$$

G. Poy and S. Žumer, Optics Express 28 (2020)

Physics-based splitting of the wave equation

- Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
- After eliminating E_z and keeping only forward modes:

$$i\partial_z oldsymbol{E}_\perp = - oldsymbol{\mathcal{P}} oldsymbol{E}_\perp$$

• What's inside $\boldsymbol{\mathcal{P}}$?

G. Pov

Beam propagation formula

Phase op. $\boldsymbol{K} \sim k_0^2 \boldsymbol{\epsilon}$

Walkoff op. $\boldsymbol{W} \sim (\boldsymbol{\epsilon} \, \boldsymbol{u}_z) \otimes \boldsymbol{\nabla}_{\perp}$

Diffraction op. $D \sim \Delta_{\perp}$

General expression for $\boldsymbol{\mathcal{P}}$:

$$oldsymbol{\mathcal{P}}=i\,oldsymbol{W}+\sqrt{oldsymbol{K}+oldsymbol{D}}+\mathcal{O}\left(\delta\epsilon^2
ight)$$

Explicit solution for the transverse optical field:

$$oldsymbol{E}_{\perp}ig|_{z_2} = \exp\left\{i\int_{z_1}^{z_2}oldsymbol{\mathcal{P}}\mathrm{d}z
ight\}oldsymbol{E}_{\perp}ig|_{z_1}$$

G. Poy and S. Žumer, Optics Express 28 (2020)

Operator-based simulation methods

Application to polarised micrographs simulation

Advantage: fast and accurate simulations

B. Berteloot et al., Soft Matter 16 (2020)

Application to light waveguiding

Simulated light mode inside a curved cholesteric finger of type II:

G. Poy and S. Žumer, Optics Express 28 (2020)

Outline

1 Ray-based simulation method

2 Operator-based simulation methods

Availability as an open-source package: Nemaktis

- The open-source package (Windows/Linux) includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation

Availability as an open-source package: Nemaktis

- The open-source package (Windows/Linux) includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation
- Where to find it: search **Nemaktis** on **github.com** or **google**.

Availability as an open-source package: Nemaktis

- The open-source package (Windows/Linux) includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation
- Where to find it: search **Nemaktis** on **github.com** or **google**.
- Closed-source BPM code for advanced uses: wide-angle beam deflection, non-linear optics, etc.

Thank you for your attention!