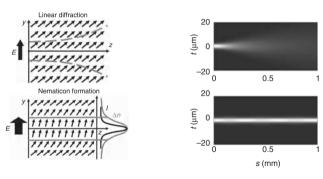
Optical solitons and chirality-enhanced nonlinear optical response in frustrated liquid crystals

Guilhem Poy

Faculty of Mathematics and Physics, Ljubljana

September 8, 2021

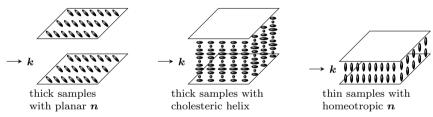


Outline

- Introduction
- 2 Previous study with homeotropic cells
- Simulations of chiral optical solitons in planar cells
- 4 Theoretical results for planar cells
- 6 Conclusion

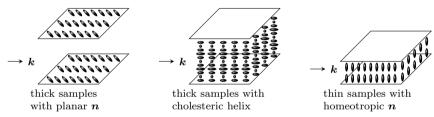
Motivations

Spatial light solitons in liquid crystals: nematicons



G. Assanto. Nematicons. John Wiley & Sons, 2013

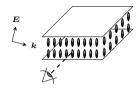
Increasing beam power


Motivations

Studied systems in the past 20 years:

Motivations

Studied systems in the past 20 years:

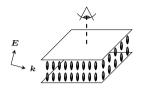

What about confined chiral systems? Can we amplify the optical response with chirality?

Outline

- Introduction
- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- 4 Theoretical results for planar cells
- 6 Conclusion

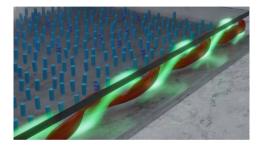
2 / 10

Our first approach: unwound cholesteric with homeotropic anchoring

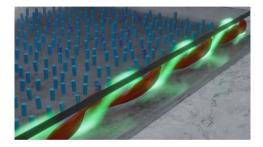

Side slice of beam intensity (simulation):

Side slice of 3PF signal (experiment):

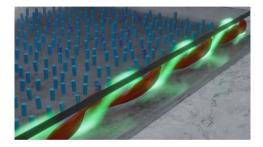
Our first approach: unwound cholesteric with homeotropic anchoring


Top view of the thickness-averaged laser intensity (simulation):

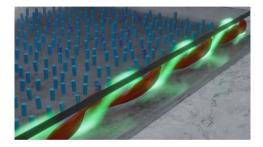
Linear optical regime Non-linear optical regime


Top view of the scattered laser light (experiments):

Linear optical regime


Non-linear optical regime

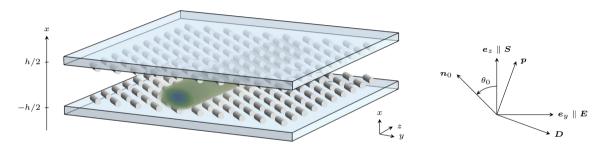
 \bullet Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.


- Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.
- Basic mechanism: for a given optical power, the amplitude of molecular reorientation is boosted by the chiral molecules.

- Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.
- Basic mechanism: for a given optical power, the amplitude of molecular reorientation is boosted by the chiral molecules.
- Advanced theoretical analysis very difficult because of the complex bouncing pattern of the beam.

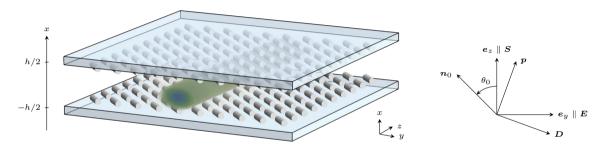
G. Poy et al., Physical Review Letters 125 (2020)

4 / 10



- Possibility of generating solitons at a power ~ 2 times smaller than in achiral media.
- Basic mechanism: for a given optical power, the amplitude of molecular reorientation is boosted by the chiral molecules.
- Advanced theoretical analysis very difficult because of the complex bouncing pattern of the beam.

G. Poy et al., Physical Review Letters 125 (2020)


4 / 10

New approach: unwound cholesteric with planar anchoring

- Control parameter: spontaneous twist $q = 2\pi/P$, with P periodicity of cholesteric helix.
- When $q < q_c \approx \pi/h$, the unwound cholesteric is stable.

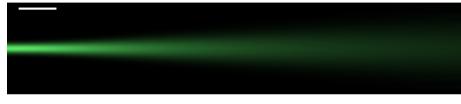
New approach: unwound cholesteric with planar anchoring

- Control parameter: spontaneous twist $q = 2\pi/P$, with P periodicity of cholesteric helix.
- When $q < q_c \approx \pi/h$, the unwound cholesteric is stable.

Can we get additional insight in this simpler sample geometry?

5 / 10

Outline


- 1 Introduction
- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- 4 Theoretical results for planar cells
- 6 Conclusion

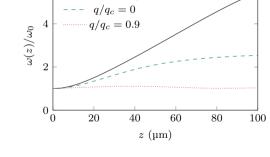
5 / 10

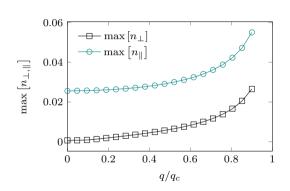
08/09/2021

Simulated self-focused intensity profiles

Vanishingly small power

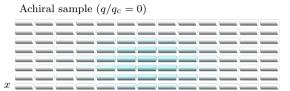
$$P = 3.76 \ mW$$
, achiral sample $(q/q_c = 0)$

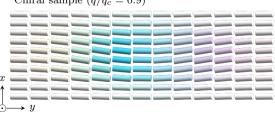


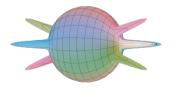

$$P = 3.76 \text{ mW}$$
, chiral sample $(q/q_c = 0.9)$

Waist evolution and chirality-enhancement effect

diffracting

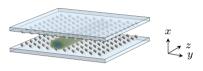

6




Amplification of nonlinear optical response due to chirality: almost $\times 3$ (higher than in homeotropic cells)

Transverse cross-section of the director field

Chiral sample $(q/q_c = 0.9)$


Outline

- Introduction
- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- Theoretical results for planar cells
- 6 Conclusion

Light fully confined by the plates of the sample:

$$A_y \approx A(y,z) \psi(x,z) \exp\left\{i \boldsymbol{p} \cdot \boldsymbol{R}\right\}$$
 Waveguide mode along x Amplitude profile along y

Light fully confined by the plates of the sample:

$$A_y \approx A(y,z) \psi(x,z) \exp\left\{i \boldsymbol{p} \cdot \boldsymbol{R}\right\}$$
 Waveguide mode along x Amplitude profile along y

 \bullet Simplified x-averaged wave equation:

$$\left[2ip_z\partial_Z + \frac{\partial^2_Y}{\partial^2_Y} + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \partial_Y^2$: diffraction.
- \star $\Gamma_{\rm eff}$: effective nonlinear photonics potential.

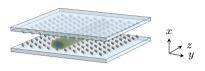
Light fully confined by the plates of the sample:

$$A_y \approx A(y,z) \psi(x,z) \exp\left\{i \boldsymbol{p} \cdot \boldsymbol{R}\right\}$$
 Waveguide mode along x Amplitude profile along y

 \bullet Simplified x-averaged wave equation:

$$\left[2ip_z\partial_Z + \frac{\partial_Y^2}{\partial_Y} + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \ \partial_Y^2$: diffraction.
- \star $\Gamma_{\rm eff}$: effective nonlinear photonics potential.
- In Fourier space: $\tilde{\Gamma}_{\text{eff}} = \tilde{G}_{\text{eff}} \tilde{\mathcal{J}}_{\text{eff}}$, with \mathcal{J}_{eff} the rescaled intensity profile associated with A.


Light fully confined by the plates of the sample:

$$A_y \approx A(y,z) \psi(x,z) \exp\left\{i \boldsymbol{p} \cdot \boldsymbol{R}\right\}$$
 Waveguide mode along x Amplitude profile along y

 \bullet Simplified x-averaged wave equation:

$$\left[2ip_z\partial_Z + \frac{\partial^2_Y}{\partial^2_Y} + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \partial_{\mathbf{V}}^2$: diffraction.
- \star $\Gamma_{\rm eff}$: effective nonlinear photonics potential.
- In Fourier space: $\tilde{\Gamma}_{\text{eff}} = \tilde{G}_{\text{eff}} \tilde{\mathcal{J}}_{\text{eff}}$, with \mathcal{J}_{eff} the rescaled intensity profile associated with A.
- Effective Green function of the LC's reponse: $\tilde{G}_{\text{eff}} \sim \frac{|\mathbf{k}|^2}{|\mathbf{k}|^4 \eta^2 q^2 k_y^2}$ increases when q increases.

Light fully confined by the plates of the sample:

$$A_y pprox A(y,z)\psi(x,z) \exp\left\{i m{p} \cdot m{R}
ight\}$$
 Waveguide mode along x Amplitude profile along y

 \bullet Simplified x-averaged wave equation:

$$\left[2ip_z\partial_Z + \frac{\partial^2_Y}{\partial^2_Y} + \frac{2P}{P_0}\Gamma_{\text{eff}}\right]A = 0$$

- $\star \partial_{\mathbf{V}}^2$: diffraction.
- \star $\Gamma_{\rm eff}$: effective nonlinear photonics potential.
- In Fourier space: $\tilde{\Gamma}_{\text{eff}} = \tilde{G}_{\text{eff}} \tilde{\mathcal{J}}_{\text{eff}}$, with \mathcal{J}_{eff} the rescaled intensity profile associated with A.
- Effective Green function of the LC's reponse: $\tilde{G}_{\text{eff}} \sim \frac{|\mathbf{k}|^2}{|\mathbf{k}|^4 \eta^2 q^2 k_y^2}$ increases when q increases.
- Estimation of the power of a fundamental soliton with waist ω_0 :

$$P = \frac{P_0}{k_0^2 \omega_0^4 \left[-\Gamma_{\text{eff}}^{"}(0) \right]}$$

Outline

- Introduction
- 2 Previous study with homeotropic cells
- 3 Simulations of chiral optical solitons in planar cells
- 4 Theoretical results for planar cells
- 6 Conclusion

Concluding remarks

Take-home message

Chirality allows to boost the response of frustrated liquid crystals to external fields, and therefore to generate optical solitons at a lower power than in achiral media.

- Experimental implementation: need to avoid π -twisted domains, only keeping the unwound phase inside the LC sample.
- Beyond solitonic science: chirality-enhanced optomechanical manipulation of LC patterns with laser, relevance in spin-orbit interactions, etc.

G. Poy FLC 2021

Thank you for your attention!