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Spatial light solitons in liquid crystals: nematicons
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What about confined chiral systems?
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Motivations

Motivations

What makes frustrated cholesteric (FCLC) an interesting system:
Metastability for carefully chosen values of d/P

Rich possibilities of interaction between light beams and topological solitons.

Problematics
How to accurately model light propagation in confined birefringent systems?
Can we generate light solitons in frustrated cholesteric?
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Light propagation in confined birefringent media

Required features

isotropic

birefringent

isotropic

E(r⊥, z + dz) = U(z, dz)E(r⊥, z)+ + + + · · ·

Diffraction at interfaces of discontinuity of the permittivity tensor

Wide-angle propagation
Anisotropic effects in LC: beam walk-off, couplings between orthogonal polarisations...
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Light propagation in confined birefringent media

Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating Ez:(
i∂z + iW +D′ +D′′ +

√
K
)
E⊥ = 0

√
K

k

S
n

W D′ +D′′

√
K: Phase operator, exact expression. ∼ Jones matrix.

W: Walk-off operator, first-order transverse derivative. ∼ Translation operator.
D′: Diffraction operator, second-order transverse derivatives. ∼ Anisotropic diffusion.
D′′: Wide-angle operator, fourth-order transverse derivatives.
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Light propagation in confined birefringent media

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

F [n,E] =

∫
V
dV

[
fF(n,∇n)−

ε0εa |n ·E|2
4

]

Non-linear iterative scheme:
Ek+1: BPM solution with ε = ε⊥I+ εank ⊗ nk
nk+1 = nk + µ δFδn [nk,Ek+1]

Typical running time for a mesh of 3× 106 points: 4 s / step
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Light solitons in frustrated cholesteric

Optical fields structure

Top view of the thickness-averaged intensity:
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Light solitons in frustrated cholesteric

Optical fields structure

Side view of the field amplitude:
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Light solitons in frustrated cholesteric

Non-linear response

Side view of the director field:
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Light solitons in frustrated cholesteric

Non-linear response

Chirality-enhanced Kerr response:

0 0.2 0.4 0.6 0.8 1

6 · 10−2

8 · 10−2

0.1

0.12

Rescaled spontaneous twist q/q?

M
ax

(n
z
)

G. Poy OLC 2019 Québec 7 / 9



Light solitons in frustrated cholesteric

Comparison with experiments

Scattered light and polarised optical micrographs (I. Smalyukh group):
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Conclusion

Conclusion

New BPM method tailored for propagation in confined anisotropic waveguide.

It is possible to generate solitons in confined cholesteric system, with:
? "bouncing" beam between the sample plates
? periodic reorientation along the beam axis
? chirality-enhanced Kerr response

To be explored:
? Superposition of normal and transverse polarisations
? Interaction with topological solitons
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Conclusion

Thank you for your attention!
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