A new operator-splitted beam propagation method with application to non-linear optics in liquid crystals

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

September 09, 2019
Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion
Motivations

- Spatial light solitons in liquid crystals: nematicons

Studied systems in the past 20 years:
- thick samples with planar nematic
- thick samples with cholesteric helix
- thin samples with homeotropic nematic

What about confined chiral systems?

G. Poy
OLC 2019
Québec
Motivations

- Spatial light solitons in liquid crystals: nematicons

- Studied systems in the past 20 years:
 - thick samples with planar n
 - thick samples with cholesteric helix
 - thin samples with homeotropic n
Motivations

- Spatial light solitons in liquid crystals: nematicons

Studied systems in the past 20 years:

- thick samples with planar n
- thick samples with cholesteric helix
- thin samples with homeotropic n

What about confined chiral systems?
Motivations

What makes frustrated cholesteric (FCLC) an interesting system:

- Metastability for carefully chosen values of d/P
Motivations

What makes frustrated cholesteric (FCLC) an interesting system:

- Metastability for carefully chosen values of d/P

- Rich possibilities of interaction between light beams and topological solitons.
Motivations

What makes frustrated cholesteric (FCLC) an interesting system:

- Metastability for carefully chosen values of d/P

- Rich possibilities of interaction between light beams and topological solitons.

Problematics

- How to accurately model light propagation in confined birefringent systems?
- Can we generate light solitons in frustrated cholesteric?
Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion
Required features

- Diffraction at interfaces of discontinuity of the permittivity tensor
Required features

- Diffraction at interfaces of discontinuity of the permittivity tensor
- Wide-angle propagation
Required features

- Diffraction at interfaces of discontinuity of the permittivity tensor
- Wide-angle propagation
- Anisotropic effects in LC: beam walk-off, couplings between orthogonal polarisations...
Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating E_z:

$$\left(i\partial_z + iW + D' + D'' + \sqrt{K} \right) E_\perp = 0$$
Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating E_z:

$$\left(i\partial_z + iW + D' + D'' + \sqrt{K} \right) E_\perp = 0$$

- \sqrt{K}: Phase operator, exact expression. \sim Jones matrix.
- W: Walk-off operator, first-order transverse derivative. \sim Translation operator.
- D': Diffraction operator, second-order transverse derivatives. \sim Anisotropic diffusion.
- D'': Wide-angle operator, fourth-order transverse derivatives.
Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating E_z:

$$\left(i\partial_z + iW + D' + D'' + \sqrt{K} \right) E_\perp = 0$$

- \sqrt{K}: Phase operator, exact expression. \sim Jones matrix.
- W: Walk-off operator, first-order transverse derivative. \sim Translation operator.
Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating E_z:

\[
\left(i\partial_z + iW + D' + D'' + \sqrt{K}\right) E_\perp = 0
\]

- \sqrt{K}: Phase operator, exact expression. \sim Jones matrix.
- W: Walk-off operator, first-order transverse derivative. \sim Translation operator.
- D': Diffraction operator, second-order transverse derivatives. \sim Anisotropic diffusion.
Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating E_z:

$$\left(i \partial_z + iW + D' + D'' + \sqrt{K}\right) E_\perp = 0$$

- \sqrt{K}: Phase operator, exact expression. \sim Jones matrix.
- W: Walk-off operator, first-order transverse derivative. \sim Translation operator.
- D': Diffraction operator, second-order transverse derivatives. \sim Anisotropic diffusion.
- D'': Wide-angle operator, fourth-order transverse derivatives.
Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

\[F[n, E] = \int_V dV \left[f_F(n, \nabla n) - \frac{\epsilon_0 \epsilon_a |n \cdot E|^2}{4} \right] \]
Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

\[F[n, E] = \int_V dV \left[f_F(n, \nabla n) - \frac{\varepsilon_0 \varepsilon_a}{4} |n \cdot E|^2 \right] \]

Non-linear iterative scheme:

- \(E_{k+1} \): BPM solution with \(\varepsilon = \varepsilon_\perp \mathbf{I} + \varepsilon_a n_k \otimes n_k \)
- \(n_{k+1} = n_k + \mu \frac{\delta F}{\delta n} [n_k, E_{k+1}] \)
Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

\[
F[n, E] = \int_V dV \left[f_F(n, \nabla n) - \frac{\epsilon_0 \epsilon_a |n \cdot E|^2}{4} \right]
\]

Non-linear iterative scheme:

- \(E_{k+1} \): BPM solution with \(\epsilon = \epsilon_\perp I + \epsilon_a n_k \otimes n_k \)
- \(n_{k+1} = n_k + \mu \frac{\delta F}{\delta n} [n_k, E_{k+1}] \)

Typical running time for a mesh of \(3 \times 10^6 \) points: \(4 \text{ s / step} \)
Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion
Optical fields structure

Top view of the thickness-averaged intensity:

\[\frac{P}{P_0} = 0 \]
\[\frac{P}{P_0} = 1 \]
Optical fields structure

Side view of the field amplitude:
Non-linear response

Side view of the director field:

\[n_y \]

\[n_z \]
Non-linear response

Chirality-enhanced Kerr response:

![Graph of rescaled spontaneous twist against q/q*](image)
Comparison with experiments

Scattered light and polarised optical micrographs (I. Smalyukh group):
Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion
Conclusion

- New BPM method tailored for propagation in confined anisotropic waveguide.
New BPM method tailored for propagation in confined anisotropic waveguide.

It is possible to generate solitons in confined cholesteric system, with:
- "bouncing" beam between the sample plates
- periodic reorientation along the beam axis
- chirality-enhanced Kerr response
New BPM method tailored for propagation in confined anisotropic waveguide.

It is possible to generate solitons in confined cholesteric system, with:

- "bouncing" beam between the sample plates
- periodic reorientation along the beam axis
- chirality-enhanced Kerr response

To be explored:

- Superposition of normal and transverse polarisations
- Interaction with topological solitons
Thank you for your attention!