A new operator-splitted beam propagation method with application to non-linear optics in liquid crystals

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

September 09, 2019

Outline

Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion

• Spatial light solitons in liquid crystals: nematicons

Motivations

• Spatial light solitons in liquid crystals: nematicons

• Studied systems in the past 20 years:

Motivations

• Spatial light solitons in liquid crystals: nematicons

• Studied systems in the past 20 years:

What makes frustrated cholesteric (FCLC) an interesting system:

 $\bullet\,$ Metastability for carefully chosen values of d/P

What makes frustrated cholesteric (FCLC) an interesting system:

• Metastability for carefully chosen values of d/P

• Rich possibilities of interaction between light beams and topological solitons.

What makes frustrated cholesteric (FCLC) an interesting system:

 $\bullet\,$ Metastability for carefully chosen values of d/P

• Rich possibilities of interaction between light beams and topological solitons.

Problematics

- How to accurately model light propagation in confined birefringent systems?
- Can we generate light solitons in frustrated cholesteric?

G. Poy

Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion

Required features

• Diffraction at interfaces of discontinuity of the permittivity tensor

Required features

- Diffraction at interfaces of discontinuity of the permittivity tensor
- Wide-angle propagation

Required features

- Diffraction at interfaces of discontinuity of the permittivity tensor
- Wide-angle propagation
- Anisotropic effects in LC: beam walk-off, couplings between orthogonal polarisations...

Physics-based operator splitting in the wave equation

$$\left(i\partial_z + i\mathbf{W} + \mathbf{D}' + \mathbf{D}'' + \sqrt{\mathbf{K}}\right)\mathbf{E}_{\perp} = 0$$

Physics-based operator splitting in the wave equation

From Maxwell equations, after eliminating E_z :

$$\left(i\partial_z + i\mathbf{W} + \mathbf{D}' + \mathbf{D}'' + \sqrt{\mathbf{K}}\right)\mathbf{E}_{\perp} = 0$$

• $\sqrt{\mathbf{K}}$: Phase operator, exact expression. ~ Jones matrix.

Physics-based operator splitting in the wave equation

$$\left(i\partial_z + i\mathbf{W} + \mathbf{D}' + \mathbf{D}'' + \sqrt{\mathbf{K}}\right)\mathbf{E}_{\perp} = 0$$

- $\sqrt{\mathbf{K}}$: Phase operator, exact expression. ~ Jones matrix.
- W: Walk-off operator, first-order transverse derivative. \sim Translation operator.

Physics-based operator splitting in the wave equation

$$\left(i\partial_z + i\mathbf{W} + \mathbf{D}' + \mathbf{D}'' + \sqrt{\mathbf{K}}\right)\mathbf{E}_{\perp} = 0$$

- $\sqrt{\mathbf{K}}$: Phase operator, exact expression. ~ Jones matrix.
- $\bullet~W:$ Walk-off operator, first-order transverse derivative. \sim Translation operator.
- D': Diffraction operator, second-order transverse derivatives. \sim Anisotropic diffusion.

Physics-based operator splitting in the wave equation

$$\left(i\partial_z + i\mathbf{W} + \mathbf{D}' + \mathbf{D}'' + \sqrt{\mathbf{K}}\right)\mathbf{E}_{\perp} = 0$$

- $\sqrt{\mathbf{K}}$: Phase operator, exact expression. ~ Jones matrix.
- W: Walk-off operator, first-order transverse derivative. \sim Translation operator.
- D': Diffraction operator, second-order transverse derivatives. \sim Anisotropic diffusion.
- $\bullet~\mathbf{D}'':$ Wide-angle operator, fourth-order transverse derivatives.

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[\boldsymbol{n}, \boldsymbol{E}] = \int_{V} \mathrm{d}V \left[f_{\mathrm{F}}(\boldsymbol{n}, \nabla \boldsymbol{n}) - \frac{\epsilon_{0} \epsilon_{a} |\boldsymbol{n} \cdot \boldsymbol{E}|^{2}}{4} \right]$$

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[\boldsymbol{n}, \boldsymbol{E}] = \int_{V} \mathrm{d}V \left[f_{\mathrm{F}}(\boldsymbol{n},
abla \boldsymbol{n}) - rac{\epsilon_{0}\epsilon_{a} |\boldsymbol{n} \cdot \boldsymbol{E}|^{2}}{4}
ight]$$

Non-linear iterative scheme:

•
$$E_{k+1}$$
: BPM solution with $\epsilon = \epsilon_{\perp} \mathbf{I} + \epsilon_a n_k \otimes n_k$

•
$$\boldsymbol{n}_{k+1} = \boldsymbol{n}_k + \mu \frac{\delta F}{\delta \boldsymbol{n}} \left[\boldsymbol{n}_k, \boldsymbol{E}_{k+1} \right]$$

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[\boldsymbol{n}, \boldsymbol{E}] = \int_{V} \mathrm{d}V \left[f_{\mathrm{F}}(\boldsymbol{n}, \nabla \boldsymbol{n}) - rac{\epsilon_{0}\epsilon_{a} |\boldsymbol{n} \cdot \boldsymbol{E}|^{2}}{4}
ight]$$

Non-linear iterative scheme:

•
$$E_{k+1}$$
: BPM solution with $\epsilon = \epsilon_{\perp} \mathbf{I} + \epsilon_a n_k \otimes n_k$

•
$$\boldsymbol{n}_{k+1} = \boldsymbol{n}_k + \mu \frac{\delta F}{\delta \boldsymbol{n}} \left[\boldsymbol{n}_k, \boldsymbol{E}_{k+1} \right]$$

Typical running time for a mesh of 3×10^6 points: 4 s / step

Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

4 Conclusion

Optical fields structure

Top view of the thickness-averaged intensity:

Light solitons in frustrated cholesteric

Optical fields structure

Side view of the field amplitude:

G. Poy

Non-linear response

Side view of the director field:

Non-linear response

Chirality-enhanced Kerr response:

Comparison with experiments

Scattered light and polarised optical micrographs (I. Smalyukh group):

Outline

1 Motivations

2 Light propagation in confined birefringent media

3 Light solitons in frustrated cholesteric

• New BPM method tailored for propagation in confined anisotropic waveguide.

Conclusion

- New BPM method tailored for propagation in confined anisotropic waveguide.
- It is possible to generate solitons in confined cholesteric system, with:
 - \star "bouncing" beam between the sample plates
 - $\star\,$ periodic reorientation along the beam axis
 - $\star\,$ chirality-enhanced Kerr response

Conclusion

- New BPM method tailored for propagation in confined anisotropic waveguide.
- It is possible to generate solitons in confined cholesteric system, with:
 - \star "bouncing" beam between the sample plates
 - $\star\,$ periodic reorientation along the beam axis
 - $\star\,$ chirality-enhanced Kerr response
- To be explored:
 - $\star\,$ Superposition of normal and transverse polarisations
 - $\star\,$ Interaction with topological solitons

Thank you for your attention!