Chirality in soft matter: from out-of-equilibrium physics to non-linear optics

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

November 20, 2019

Outline

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

- 3 Light propagation in anisotropic media
- D Role of chirality in the non-linear reponse of a confined cholesteric

Chirality in everyday life

- Chiral object: distinguishable from its mirror image.
- A common example: propeller.

• Without chirality, this conversion is not possible.

 $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n

- $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.

- $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field \boldsymbol{n} .

- $\bullet\,$ Nematic liquid crystal: no positional order, mean molecular orientation n
- Nematic phase + chiral molecules: cholesteric phase.
- Effect of chirality: helix structure for the director vector field n.

Confining cholesterics between two plates

• Surface constraint: molecules must be normal to the confining surface

increasing sample thickness

P. J. Ackerman et al. Scientific Reports, 2, 2012

Confining cholesterics between two plates

• Surface constraint: molecules must be normal to the confining surface

increasing sample thickness

• Arbitrary shapes can be written!

P. J. Ackerman et al. Scientific Reports, 2, 2012

Confining cholesterics inside droplets

Topological zoo of free standing knots

Lasing in a cholesteric droplet: an omnidirectional microscopic coherent light source

D. Seč, S. Čopar, and S. Žumer. Nature Communications, 5:3057, 2014
M. Humar. Liquid Crystals, 43:1937–1950, 2016

Other aspects of chirality in soft matter

Cross-coupling effects in out-of-equilibrium systems:

Problematic

Role of chirality in confined liquid-crystal systems submitted to a temperature gradient?

Other aspects of chirality in soft matter

Non-linear optical response of liquid crystal systems:

Linear diffraction 20 ****** *t* (μm) 0 Е -20 0.5 Ω Increasing beam power Nematicon formatio 20 t (µm) 0 F -20 0.5 0 s (mm)

G. Assanto. Nematicons. John Wiley & Sons, 2013

Problematic

Role of chirality in the non-linear optical response of a confined cholesteric?

Outline

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

- State of the art
- Lehmann effect in nematic droplets
- Summary

3) Light propagation in anisotropic media

In Role of chirality in the non-linear reponse of a confined cholesteric

Outline

1 Introduction

Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal dropletsState of the art

- Lehmann effect in nematic droplets
- Summary

3) Light propagation in anisotropic media

Role of chirality in the non-linear reponse of a confined cholesteric

First observations by Lehmann

Lehmann, 1900:

- coexistence of cholesteric droplets with the isotropic fluid
- rotation of the droplets internal texture when heated from below

O. Lehmann. Annalen der Physik, 307:649–705, 1900

Leslie interpretation of the Lehmann experiment

First explanation by Leslie in 1968:

• Existence, in a cholesteric phase, of a torque on the director: $\Gamma_{\text{TM}} = \nu \ \boldsymbol{n} \times [\boldsymbol{n} \times \boldsymbol{G}]$, with ν the Leslie thermomechanical coefficient.

F. M. Leslie. Proceedings of the Royal Society A, 307:359–372, 1968

Leslie interpretation of the Lehmann experiment

First explanation by Leslie in 1968:

- Existence, in a cholesteric phase, of a torque on the director: $\Gamma_{\text{TM}} = \nu \ \boldsymbol{n} \times [\boldsymbol{n} \times \boldsymbol{G}]$, with ν the Leslie thermomechanical coefficient.
- As in a wind turbine, essential role of the chirality: no rotation predicted in a nematic phase.

F. M. Leslie. Proceedings of the Royal Society A, 307:359–372, 1968

Leslie interpretation of the Lehmann experiment

First explanation by Leslie in 1968:

Leslie paradigm

The rotation of the texture in the Lehmann experiment is due to the Leslie thermomechanical torque $\Gamma_{\rm TM}$

F. M. Leslie. Proceedings of the Royal Society A, 307:359–372, 1968

Lehmann vs. Leslie experiment

Oswald & Dequidt, 2008-2014:

P. Oswald and A. Dequidt. Physical Review Letters, 100:217802, 2008

P. Oswald. Europhysics Letters, 108:36001, 2014

Lehmann vs. Leslie experiment

Oswald & Dequidt, 2008-2014:

 ω_d and ω_m sometimes of opposite signs!

P. Oswald and A. Dequidt. Physical Review Letters, 100:217802, 2008

P. Oswald. Europhysics Letters, 108:36001, 2014

Lehmann vs. Leslie experiment

Oswald & Dequidt, 2008-2014:

 ω_d and ω_m sometimes of opposite signs!

Leslie effect \neq Lehmann effect?

P. Oswald and A. Dequidt. Physical Review Letters, 100:217802, 2008

P. Oswald. Europhysics Letters, 108:36001, 2014

Rotation because of the microscopic or macroscopic chirality?

Rotation because of the microscopic or macroscopic chirality?

• microscopic chirality \Leftrightarrow chiral molecules

(0000)

Rotation because of the microscopic or macroscopic chirality?

• microscopic chirality \Leftrightarrow chiral molecules

• macroscopic chirality \Leftrightarrow twisted texture (helix in at least one direction)

Possible tests:

Thermal gradient \Rightarrow no rotation

no chiral molecules \leftrightarrow nematic macroscopic twist

Thermal gradient \Rightarrow rotation?

Question

Can we observe the Lehmann effect in droplets of a **nematic achiral phase** with a **chiral director field**?

Outline

1 Introduction

- Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets
 State of the art
 - Lehmann effect in nematic droplets
 - Summary
- 3 Light propagation in anisotropic media
- I Role of chirality in the non-linear reponse of a confined cholesteric

Elastic deformations in a nematic phase

Frank-Oseen elastic energy:

$$F[oldsymbol{n}] = \int_V rac{\mathrm{d}V}{2} \left(K_1 \; [
abla \cdot oldsymbol{n}]^2 + K_2 \; [oldsymbol{n} \cdot
abla imes oldsymbol{n}]^2 + K_3 \; [oldsymbol{n} imes
abla imes oldsymbol{n}]^2
ight)$$

- action of a chiral interaction potential between molecules:
 - * $F[\boldsymbol{n}] \rightarrow F[\boldsymbol{n}] + \int_{V} \mathrm{d}V \ K_2 \ q \ [\boldsymbol{n} \cdot \nabla \times \boldsymbol{n}]$

- action of a chiral interaction potential between molecules:
 - * $F[\boldsymbol{n}] \rightarrow F[\boldsymbol{n}] + \int_V \mathrm{d}V \; K_2 \; q \; [\boldsymbol{n} \cdot \nabla \times \boldsymbol{n}]$
 - $\star\,$ pertinent only in cholesteric phase

- action of a chiral interaction potential between molecules:
 - * $F[\boldsymbol{n}] \rightarrow F[\boldsymbol{n}] + \int_{V} \mathrm{d}V \ K_2 \ q \ [\boldsymbol{n} \cdot \nabla \times \boldsymbol{n}]$
 - $\star\,$ pertinent only in cholesteric phase
- action of a topological constraint on the LC domain surface: * $F[\mathbf{n}] \rightarrow F[\mathbf{n}] + \int_{S} dS \gamma(\mathbf{n})$, with γ the anchoring energy

- action of a chiral interaction potential between molecules:
 - * $F[\boldsymbol{n}] \rightarrow F[\boldsymbol{n}] + \int_{V} \mathrm{d}V \ K_2 \ q \ [\boldsymbol{n} \cdot \nabla \times \boldsymbol{n}]$
 - $\star\,$ pertinent only in cholesteric phase
- action of a topological constraint on the LC domain surface:
 - * $F[\mathbf{n}] \rightarrow F[\mathbf{n}] + \int_{S} \mathrm{d}S \ \gamma(\mathbf{n})$, with γ the anchoring energy
 - $\star\,$ pertinent both in nematic and cholesteric phases

Stability of bipolar configuration

R. D. Williams. Journal of physics A: mathematical and general, 19:3211, 1986

Rotation of twisted bipolar droplets

• Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$

Rotation of twisted bipolar droplets

- Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$
- Achiral phase, with random handedness of the twist inside the droplets

Rotation of twisted bipolar droplets

- Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$
- Achiral phase, with random handedness of the twist inside the droplets
- The sign of twist fixes the sign of the angular velocity ⇒ two senses of rotation
Rotation of twisted bipolar droplets

- Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$
- Achiral phase, with random handedness of the twist inside the droplets
- The sign of twist fixes the sign of the angular velocity ⇒ two senses of rotation

Rotation only due to the twist of the director field

Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets (2)

- State of the art
- Lehmann effect in nematic droplets
- Summary

Concluding remarks for the Lehmann effect

• Lehmann effect in an achiral phase with a twisted director field:

The Lehmann effect is only due to the chirality of the director field ↓ The Leslie thermomechanical model cannot explain alone the Lehmann effect

P. Oswald, A. Dequidt, and G. Poy. Liquid Crystals Reviews, 7:142–166, 2019

Concluding remarks for the Lehmann effect

• Lehmann effect in an achiral phase with a twisted director field:

The Lehmann effect is only due to the chirality of the director field $$\Downarrow$$ The Leslie thermomechanical model cannot explain alone the Lehmann effect

• What about other theoretical model? What is the "right" explanation?

Melting-growth model: a gradient of impurity drives the molecules upward inside the droplet while the droplet interface stays fixed

P. Oswald, A. Dequidt, and G. Poy. Liquid Crystals Reviews, 7:142-166, 2019

G. Poy

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

(3) Light propagation in anisotropic media

- Motivations
- Ray-based simulation method
- Operator-based simulation methods
- Summary

Role of chirality in the non-linear reponse of a confined cholesteric

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

3 Light propagation in anisotropic media

- Motivations
- Ray-based simulation method
- Operator-based simulation methods
- Summary

Role of chirality in the non-linear reponse of a confined cholesteric

• Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
- Simulation tools for light propagation:
 - \star Jones method (fast but inacurate, easy to code)
 - * Finite Difference Time Domain (acurate but slow, open-source, complex to use)
 - \star Other methods (in-house implementation)

- Recent advances in LC-based light application: tunable microresonators, micro-optical elements, diffraction gratings...
- Simulation tools for light propagation:
 - $\star\,$ Jones method (fast but inacurate, easy to code)
 - * Finite Difference Time Domain (acurate but slow, open-source, complex to use)
 - $\star\,$ Other methods (in-house implementation)

Nemaktis: an easy-to-use open-source platform including tools for light propagation in arbitrary birefringent media.

1 Introduction

Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

⁽³⁾ Light propagation in anisotropic media

- Motivations
- Ray-based simulation method
- Operator-based simulation methods
- Summary

Role of chirality in the non-linear reponse of a confined cholesteric

Hamiltonian ray-tracing and energy transport

Hamiltonian ray-tracing and energy transport

 $\mathcal{F}^{(\alpha)} = n_{\text{eff}} \sqrt{q} E$ conserved along a ray

Application to bright-field microscopy

sim.

G. Poy

Application to bright-field microscopy

exp.

sim.

Advantage: access to ray geometry and natural eigenmodes Disadvantage: Mauguin regime, caustics

1 Introduction

Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

3 Light propagation in anisotropic media

- Motivations
- Ray-based simulation method
- Operator-based simulation methods
- Summary

Role of chirality in the non-linear reponse of a confined cholesteric

• Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} - \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$

- Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
- After eliminating E_z and keeping only forward modes:

$$i\partial_z oldsymbol{E}_\perp = - oldsymbol{\mathcal{P}} oldsymbol{E}_\perp$$

- Wave-equation in anisotropic media: $\left[\partial_k \partial_k \delta_{ij} \partial_i \partial_j + k_0^2 \epsilon_{ij}\right] E_j = 0$
- After eliminating E_z and keeping only forward modes:

$$i\partial_z oldsymbol{E}_\perp = - oldsymbol{\mathcal{P}} oldsymbol{E}_\perp$$

• What's inside $\boldsymbol{\mathcal{P}}$?

Phase op. $\boldsymbol{K} \sim k_0^2 \boldsymbol{\epsilon}$

Walkoff op. $\boldsymbol{W} \sim (\boldsymbol{\epsilon} \, \boldsymbol{u}_z) \otimes \boldsymbol{\nabla}_{\perp}$

Phase op. $\boldsymbol{K} \sim k_0^2 \boldsymbol{\epsilon}$

Walkoff op. $\boldsymbol{W} \sim (\boldsymbol{\epsilon} \, \boldsymbol{u}_z) \otimes \boldsymbol{\nabla}_{\perp}$

Diffraction op. $D \sim \Delta_{\perp}$

General expression for $\boldsymbol{\mathcal{P}}$:

$$oldsymbol{\mathcal{P}}=i\,oldsymbol{W}+\sqrt{oldsymbol{K}+oldsymbol{D}}+\mathcal{O}\left(\delta\epsilon^2
ight)$$

Explicit solution for the transverse optical field:

$$oldsymbol{E}_{\perp}ig|_{z_2} = \exp\left\{i\int_{z_1}^{z_2}oldsymbol{\mathcal{P}}\mathrm{d}z
ight\}oldsymbol{E}_{\perp}ig|_{z_1}$$

Typical application: polarised micrographs simulation

Photo-patterned sample: I. Nys, J. Beeckman and K. Neyts, Soft Matter **11**, 2015

exp.

1 Introduction

Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

(3) Light propagation in anisotropic media

- Motivations
- Ray-based simulation method
- Operator-based simulation methods
- Summary

Role of chirality in the non-linear reponse of a confined cholesteric

Nemaktis is open-source

- The open-source package includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation

Nemaktis is open-source

- The open-source package includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation

• Where to find it: search **Nemaktis** on **github.com** (more advertisement to come)

Nemaktis is open-source

- The open-source package includes:
 - Low-level simulation backends (C++, python)
 - An easy-to-use high-level interface (python)
 - A graphical interface for micrographs simulation
- Where to find it: search **Nemaktis** on **github.com** (more advertisement to come)
- Only Windows and Linux package for now (Mac should be supported in the future)

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

3 Light propagation in anisotropic media

Role of chirality in the non-linear reponse of a confined cholesteric

- Motivations
- Light solitons in frustrated cholesteric
- Summary

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

3 Light propagation in anisotropic media

Role of chirality in the non-linear reponse of a confined cholesteric Motivations

- Light solitons in frustrated cholesteric
- Summary

Spatial light solitons in liquid crystals: nematicons

Increasing beam power

G. Assanto. Nematicons. John Wiley & Sons, 2013

Studied systems in the past 20 years:

What about confined chiral systems?

Studied systems in the past 20 years:

What about confined chiral systems?

What makes frustrated cholesteric (FCLC) an interesting system:

• Metastability for carefully chosen values of d/P

What makes frustrated cholesteric (FCLC) an interesting system:

• Metastability for carefully chosen values of d/P

• Rich possibilities of interaction between light beams and topological solitons.

What makes frustrated cholesteric (FCLC) an interesting system:

• Metastability for carefully chosen values of d/P

• Rich possibilities of interaction between light beams and topological solitons.

Problematic

Can we generate light solitons in frustrated cholesteric?

G. Poy

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

3 Light propagation in anisotropic media

Role of chirality in the non-linear reponse of a confined cholesteric
 Motivations

- Light solitons in frustrated cholesteric
- Summary

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[\boldsymbol{n}, \boldsymbol{E}] = \int_{V} \mathrm{d}V \left[f_{\mathrm{F}}(\boldsymbol{n},
abla \boldsymbol{n}) - rac{\epsilon_{0} \epsilon_{a} \left| \boldsymbol{n} \cdot \boldsymbol{E}
ight|^{2}}{4}
ight]$$

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[\boldsymbol{n}, \boldsymbol{E}] = \int_{V} \mathrm{d}V \left[f_{\mathrm{F}}(\boldsymbol{n},
abla \boldsymbol{n}) - rac{\epsilon_{0}\epsilon_{a} |\boldsymbol{n} \cdot \boldsymbol{E}|^{2}}{4}
ight]$$

Non-linear iterative scheme:

•
$$E_{k+1}$$
: BPM solution with $\epsilon = \epsilon_{\perp} \mathbf{I} + \epsilon_a n_k \otimes n_k$

•
$$\boldsymbol{n}_{k+1} = \boldsymbol{n}_k + \mu \frac{\delta F}{\delta \boldsymbol{n}} \left[\boldsymbol{n}_k, \boldsymbol{E}_{k+1} \right]$$

Orientational elasticity and non-linear interactions

Free energy of the liquid crystal phase:

$$F[\boldsymbol{n}, \boldsymbol{E}] = \int_{V} \mathrm{d}V \left[f_{\mathrm{F}}(\boldsymbol{n},
abla \boldsymbol{n}) - rac{\epsilon_{0}\epsilon_{a} |\boldsymbol{n} \cdot \boldsymbol{E}|^{2}}{4}
ight]$$

Non-linear iterative scheme:

•
$$E_{k+1}$$
: BPM solution with $\epsilon = \epsilon_{\perp} \mathbf{I} + \epsilon_a n_k \otimes n_k$

•
$$\boldsymbol{n}_{k+1} = \boldsymbol{n}_k + \mu \frac{\delta F}{\delta \boldsymbol{n}} \left[\boldsymbol{n}_k, \boldsymbol{E}_{k+1} \right]$$

Typical running time for a mesh of 3×10^6 points: 4 s / step(Full resolution of Maxwell equations for the same mesh: $\sim 1 \text{ h}$)
Optical fields structure

Top view of the thickness-averaged intensity:

Optical fields structure

Side view of the field amplitude:

G. Poy

Non-linear response

Side view of the director field:

Non-linear response

Chirality-enhanced Kerr response:

Comparison with experiments

Scattered light and polarised optical micrographs (I. Smalyukh group):

Outline

1 Introduction

2 Lehmann effect: an out-of-equilibrium effect in chiral liquid crystal droplets

3 Light propagation in anisotropic media

Role of chirality in the non-linear reponse of a confined cholesteric

- Motivations
- Light solitons in frustrated cholesteric
- Summary

Summary

- It is possible to generate solitons in confined cholesteric system, with:
 - \star "bouncing" beam between the sample plates
 - $\star\,$ periodic reorientation along the beam axis
 - $\star\,$ chirality-enhanced Kerr response

Summary

- It is possible to generate solitons in confined cholesteric system, with:
 - \star "bouncing" beam between the sample plates
 - $\star\,$ periodic reorientation along the beam axis
 - $\star\,$ chirality-enhanced Kerr response
- To be explored:
 - $\star\,$ Superposition of normal and transverse polarisations
 - $\star\,$ Interaction with topological solitons

Thank you for your attention!