Simulation of polarized optical micrographs
including light-deviation effects
in slowly-varying birefringent structures

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

September 18, 2018
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of liquid crystal droplets
4. Conclusion
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al
- Second limitation: deflection of the extraordinary rays.

How to explain the non-zero contrast of natural light micrographs?
Objective

Question
Can we design an efficient method to simulate optical micrographs of LC samples, including light deviation effects?
Objective

Question
Can we design an efficient method to simulate optical micrographs of LC samples, including light deviation effects?

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda} + \text{Mauguin regime}$
Objective

Question

Can we design an efficient method to simulate optical micrographs of LC samples, including light deviation effects?

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda} +$ Mauguin regime

Goals of our method:
- Accurate simulation of Maxwell equations: WKB expansion.
Ray-tracing method in birefringent media

Objective

Question

Can we design an efficient method to simulate optical micrographs of LC samples, including light deviation effects?

Working hypotheses: \(|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda} + \text{Mauguin regime}\)

Goals of our method:

- Accurate simulation of Maxwell equations: WKB expansion.
- Reconstruction of bulk data
Objective

Question
Can we design an efficient method to simulate optical micrographs of LC samples, including light deviation effects?

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda} + \text{Mauguin regime}$

Goals of our method:
- Accurate simulation of Maxwell equations: WKB expansion.
- Reconstruction of bulk data
- Reconstruction of screen data, focalisation can be adjusted (as in a real microscope)
Hamiltonian ray-tracing

\[
\frac{d\eta}{ds} = \{\eta, \mathcal{H}\}
\]

\[
\eta \equiv (x, p)
\]
Hamiltonian ray-tracing

\[
\frac{d\eta}{d\bar{s}} = \{\eta, \mathcal{H}\} \\
\eta \equiv (x, p)
\]

- Discontinuity of the optical index: Fresnel boundary conditions.
Reconstruction of the electric field amplitude

\[qV_0 < V_0 \quad qV_0 > V_0 \]
\[\bar{s}_i = 0 \quad \bar{s}_f \]

New result:
\[\mathcal{F}^{(\alpha)} = n_{\text{eff}} \sqrt{q} E \text{ conserved along a ray of the family } \alpha = e, o, i. \]

\[\Rightarrow \text{Compact statement of the conservation of energy} \]
Mapping $\pi : x_i \rightarrow x_f$:

- No caustics: one-to-one correspondance
- Caustic domains: many-to-one correspondance
Caustics

Mapping $\pi : \mathbf{x}_i \rightarrow \mathbf{x}_f$:
- No caustics: one-to-one correspondance
- Caustic domains: many-to-one correspondance

\Rightarrow Necessity of finding all source points $\{\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}, \ldots\}$ for a given target point \mathbf{x}_f.

(Homotopy continuation algorithm on $\pi(\mathbf{x}_i) - \mathbf{x}_f$)
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of liquid crystal droplets
4. Conclusion
Validation on a simple test-case

Setup

Incident plane wave on a transverse cholesteric helix: Poynting vector field \mathbf{S} inside the cholesteric phase?

Initial polarisation: $\frac{e_x + e_y}{\sqrt{2}}$

Two methods of resolution:
- Our improved ray-tracing method
- Exact resolution of Maxwell Eqs. (FDTD)
Validation on a simple test-case

Results

FDTD simulation

Ray tracing simulation

Horizontal profile

Vertical profile

Fast and accurate reconstruction of far from the caustic boundaries

Guilhem Poy
Results

Fast and accurate reconstruction of S far from the caustic boundaries
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of liquid crystal droplets
4. Conclusion
Nematic twisted bipolar droplet (SSY in water)

Twisted bipolar droplet in SSY suspensions:
- Planar anchoring: 2 defects
- Double twist (giant elastic anisotropy $K_2 \ll K_{1,3}$)

Orientation in the microscope:
Computation of the natural light micrographs

Natural light micrographs: average over all polarisation states.
Results

\[\Delta z = 0 \, \mu m \]

\[\Delta z = 50 \, \mu m \]

Simulation

Deflection map
(extraordinary rays)
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of liquid crystal droplets
4. Conclusion
Conclusion and outlook

- New method with fast and accurate reconstruction of S far from caustics.
Conclusion and outlook

- New method with fast and accurate reconstruction of S far from caustics.
- Good agreement with experimental micrographs of twisted bipolar droplets.
Conclusion and outlook

- New method with fast and accurate reconstruction of S far from caustics.
- Good agreement with experimental micrographs of twisted bipolar droplets.
- Perspectives:
 - CIE 1931 color space
 - Role of numerical aperture?
 - Link between chirality and symmetry-breaking in micrographs?
 - New systems: skyrmions, cholesteric fingers, banded droplets...
Going beyond the Mauguin regime

In this talk: $\mathcal{F}^{(e,o)}$ conserved along extraordinary/ordinary rays.
Going beyond the Mauguin regime

In this talk: $F^{(e,o)}$ conserved along extraordinary/ordinary rays.

Outside the Mauguin regime:

\[
\frac{d}{ds} F^{(e)} = - F^{(o)} e^{-i\Delta \phi} T^{(o)}
\]

\[
\frac{d}{ds} F^{(o)} = F^{(e)} e^{i\Delta \phi} T^{(e)}
\]

If negligible twist: no cross-coupling between the two modes.

If no deflection effects: perfect equivalence with Ong formalism.
Going beyond the Mauguin regime

In this talk: $\mathcal{F}^{(e,o)}$ conserved along extraordinary/ordinary rays.

Outside the Mauguin regime:

\[
\frac{d}{ds} \left[\mathcal{F}^{(e)} \right] = - \mathcal{F}^{(o)} e^{-i\Delta \phi} T^{(o)}
\]

\[
\frac{d}{ds} \left[\mathcal{F}^{(o)} \right] = \mathcal{F}^{(e)} e^{i\Delta \phi} T^{(e)}
\]

- If negligible twist: no cross-coupling between the two modes.
- If no deflection effects: perfect equivalence with Ong formalism
Thank you for your attention!