On the pertinence of the thermomechanical model in the Lehmann rotation of cholesteric and nematic droplets

Guilhem Poy

Laboratoire de Physique, ENS de Lyon

January 10, 2018

Outline

Introduction

- State of the art
- Questions explored during my PhD

2 Thermomechanical effects of Leslie, Akopyan and Zel'dovich

- 3 Lehmann rotation of cholesteric and nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

Outline

Introduction

- State of the art
- Questions explored during my PhD
- 2) Thermomechanical effects of Leslie, Akopyan and Zel'dovich
- 3 Lehmann rotation of cholesteric and nematic droplets
- 0 Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

First observations by Lehmann

Lehmann, 1900:

- coexistence of cholesteric droplets with the isotropic fluid
- rotation of the droplets internal texture when heated from below

Leslie interpretation of the Lehmann experiment

First explanation by Leslie in 1968:

• Existence, in a cholesteric phase, of a torque on the director: $\Gamma_{\text{TM}} = \nu \ \boldsymbol{n} \times [\boldsymbol{n} \times \boldsymbol{G}]$, with ν the Leslie thermomechanical coefficient.

Leslie interpretation of the Lehmann experiment

First explanation by Leslie in 1968:

- Existence, in a cholesteric phase, of a torque on the director: $\Gamma_{\text{TM}} = \nu \ \boldsymbol{n} \times [\boldsymbol{n} \times \boldsymbol{G}]$, with ν the Leslie thermomechanical coefficient.
- As in a wind turbine, essential role of the chirality: no rotation predicted in a nematic phase.

Leslie interpretation of the Lehmann experiment

First explanation by Leslie in 1968:

Leslie paradigm

The rotation of the texture in the Lehmann experiment is due to the Leslie thermomechanical torque $\Gamma_{\rm TM}$

Oswald & Dequidt, 2008-2014:

Oswald & Dequidt, 2008-2014:

• Measurement of ω_m gives a value for the thermomechanical coefficient of Leslie ν .

Oswald & Dequidt, 2008-2014:

- Measurement of ω_m gives a value for the thermomechanical coefficient of Leslie ν .
- The value of ν is 10 1000 too small to explain the order of magnitude of ω_d .

Oswald & Dequidt, 2008-2014:

- Measurement of ω_m gives a value for the thermomechanical coefficient of Leslie ν .
- The value of ν is 10 1000 too small to explain the order of magnitude of ω_d .
- ω_d and ω_m sometimes of opposite signs!

Leslie effect \neq Lehmann effect: the Leslie paradigm must be abandoned.

Outline

Introduction

- State of the art
- Questions explored during my PhD
- 2 Thermomechanical effects of Leslie, Akopyan and Zel'dovich
- 3 Lehmann rotation of cholesteric and nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

Akopyan and Zel'dovich couplings

Akopyan & Zel'dovich, 1984:

- Generalization of Γ_{TM} with terms of the type $\xi(\nabla n) G$.
- Terms in ξ are allowed both in nematics and cholesterics.

Akopyan and Zel'dovich couplings

Akopyan & Zel'dovich, 1984:

- Generalization of Γ_{TM} with terms of the type $\xi(\nabla n) G$.
- Terms in ξ are allowed both in nematics and cholesterics.

To be explored

- Clarification on the existence of these terms.
- Can we explain the Lehmann effect with these effects?
- Can we observe the Lehmann effect in twisted nematic droplets?

Outline

1 Introduction

- 2 Thermomechanical effects of Leslie, Akopyan and Zel'dovich
 - Theoretical considerations
 - Measurement of ν and ξ
- 3 Lehmann rotation of cholesteric and nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

Outline

1 Introduction

- Thermomechanical effects of Leslie, Akopyan and Zel'dovich
 Theoretical considerations
 - Theoretical considerations
 - Measurement of ν and ξ
- 3 Lehmann rotation of cholesteric and nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

• Write down the entropy production:

$$T\overset{\circ}{\sigma} = \boldsymbol{j}^{\alpha} \cdot \boldsymbol{f}^{\alpha} + \boldsymbol{j}^{\beta} \cdot \boldsymbol{f}^{\beta}.$$

 α and β relate to the behaviour under $t \rightarrow -t$

• Write down the entropy production:

$$T\overset{\circ}{\sigma} = \boldsymbol{j}^{\alpha} \cdot \boldsymbol{f}^{\alpha} + \boldsymbol{j}^{\beta} \cdot \boldsymbol{f}^{\beta}.$$

 α and β relate to the behaviour under $t \rightarrow -t$

• Generic form of the phenomenological relations:

$$j^{lpha} = L^{lpha lpha} \, f^{lpha} + L^{lpha eta} \, f^{eta}, \qquad j^{eta} = L^{eta lpha} \, f^{lpha} + L^{eta eta} \, f^{eta}$$

• Write down the entropy production:

$$T\overset{\circ}{\sigma} = \boldsymbol{j}^{\alpha} \cdot \boldsymbol{f}^{\alpha} + \boldsymbol{j}^{\beta} \cdot \boldsymbol{f}^{\beta}.$$

 α and β relate to the behaviour under $t \rightarrow -t$

• Generic form of the phenomenological relations:

$$oldsymbol{j}^lpha = oldsymbol{L}^{lpha lpha} \,oldsymbol{f}^lpha + oldsymbol{L}^{lpha eta} \,oldsymbol{f}^eta, \qquad oldsymbol{j}^eta = oldsymbol{L}^{eta lpha} \,oldsymbol{f}^lpha + oldsymbol{L}^{eta eta} \,oldsymbol{f}^eta$$

• Onsager reciprocity relations:

$$\boldsymbol{L}^{\alpha\alpha} = [\boldsymbol{L}^{\alpha\alpha}]^{\mathsf{T}}, \qquad \boldsymbol{L}^{\beta\beta} = \begin{bmatrix} \boldsymbol{L}^{\beta\beta} \end{bmatrix}^{\mathsf{T}}, \qquad \boldsymbol{L}^{\alpha\beta} = -\begin{bmatrix} \boldsymbol{L}^{\beta\alpha} \end{bmatrix}^{\mathsf{T}}$$

• Write down the entropy production:

$$T\overset{\circ}{\sigma} = \boldsymbol{j}^{\alpha} \cdot \boldsymbol{f}^{\alpha} + \boldsymbol{j}^{\beta} \cdot \boldsymbol{f}^{\beta}.$$

 α and β relate to the behaviour under $t \rightarrow -t$

• Generic form of the phenomenological relations:

$$oldsymbol{j}^lpha = oldsymbol{L}^{lpha lpha} \,oldsymbol{f}^lpha + oldsymbol{L}^{lpha eta} \,oldsymbol{f}^eta, \qquad oldsymbol{j}^eta = oldsymbol{L}^{eta lpha} \,oldsymbol{f}^lpha + oldsymbol{L}^{eta eta} \,oldsymbol{f}^eta$$

• Onsager reciprocity relations:

$$\boldsymbol{L}^{\alpha\alpha} = \left[\boldsymbol{L}^{\alpha\alpha}\right]^{\mathsf{T}}, \qquad \boldsymbol{L}^{\beta\beta} = \left[\boldsymbol{L}^{\beta\beta}\right]^{\mathsf{T}}, \qquad \boldsymbol{L}^{\alpha\beta} = -\left[\boldsymbol{L}^{\beta\alpha}\right]^{\mathsf{T}}$$

• Curie principle: compatibility with the symmetries of the phase

Guilhem Poy

Thermomechanical equations

Irreversible production of entropy: $T \overset{\circ}{\sigma} = -\Gamma^{(\text{neq})} \cdot \boldsymbol{\omega} - \boldsymbol{j}^{(\sigma)} \cdot \boldsymbol{G}$

Thermomechanical equations

Irreversible production of entropy: $T \overset{\circ}{\sigma} = -\Gamma^{(\text{neq})} \cdot \boldsymbol{\omega} - \boldsymbol{j}^{(\sigma)} \cdot \boldsymbol{G}$ Derivation of the phenomenological equations:

Thermomechanical equations

Irreversible production of entropy: $T \overset{\circ}{\sigma} = -\Gamma^{(\text{neq})} \cdot \boldsymbol{\omega} - \boldsymbol{j}^{(\sigma)} \cdot \boldsymbol{G}$ Derivation of the phenomenological equations:

This system respects the Onsager reciprocity relations.

Simplified version of the phenomenological equations

$$\Gamma_i^{\rm TM} = \xi_{ij}(\nabla n) \, G_j$$

• Tensorial expression of $\xi_{ij}(\nabla n)$ quite complicated:

$$\begin{aligned} \xi_{ij}(\nabla n) &= -\left[\nu + \bar{\xi}_2 \left(\epsilon_{kpq} \, n_k \, n_{q,p}\right)\right] \delta_{ij}^{\perp} + \bar{\xi}_1 \, n_{l,l} \, n_k \, \epsilon_{ikj} \\ &+ \bar{\xi}_3 \left(\epsilon_{ikp} \, n_k \, n_q \, n_{p,q}\right) n_j + \bar{\xi}_4 \, \epsilon_{ikp} \, n_k \left(n_{j,p} - n_{p,j}\right). \end{aligned}$$

Simplified version of the phenomenological equations

 $\Gamma_i^{\rm TM} = \xi_{ij}(\nabla n) \, G_j$

• Tensorial expression of $\xi_{ij}(\nabla n)$ quite complicated:

$$\begin{aligned} \xi_{ij}(\nabla n) &= -\left[\nu + \bar{\xi}_2 \left(\epsilon_{kpq} \, n_k \, n_{q,p}\right)\right] \delta_{ij}^{\perp} + \bar{\xi}_1 \, n_{l,l} \, n_k \, \epsilon_{ikj} \\ &+ \bar{\xi}_3 \left(\epsilon_{ikp} \, n_k \, n_q \, n_{p,q}\right) n_j + \bar{\xi}_4 \, \epsilon_{ikp} \, n_k \left(n_{j,p} - n_{p,j}\right). \end{aligned}$$

• We assume a simplified form for the torque Γ^{TM} $(\bar{\xi}_i = \xi)$:

$$\boldsymbol{\Gamma}^{\mathrm{TM}} = \nu \, \boldsymbol{G}^{\perp} + \xi \left(\boldsymbol{G} \cdot \boldsymbol{\nabla} \right) \boldsymbol{n}$$

- $\star~\nu :$ Leslie effect, allowed only in cholesterics.
- $\star~\xi\colon$ Akopyan & Zel'dovich effect, allowed both in nematics and cholesterics.

Outline

1 Introduction

- 2 Thermomechanical effects of Leslie, Akopyan and Zel'dovich
 - Theoretical considerations
 - \bullet Measurement of ν and ξ
- 3 Lehmann rotation of cholesteric and nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

Translationally invariant configurations (TIC)

Translationally invariant configurations (TIC)

 $\omega_p \neq \omega_m$ in general \Rightarrow we can deduce $(\bar{\nu}, \xi)$ from (ω_p, ω_m) .

Guilhem Poy

Experimental setup

Guilhem Poy

Rotation of the planar TIC

Rotation of the mixed TIC

Angular velocities with a mixture of $\overline{\text{CCN}}$ -37 + 3 % CC

 $\omega_p \neq \omega_m \Rightarrow$ we can measure $\bar{\nu}$ and ξ .

Final results

From our theoretical model, we calculate just below T_{ChI} :

	CC	R811
$ar{ u}/q~({ m fN/K})$	11 ± 1	3 ± 1
$\xi~({ m fN/K})$	-35 ± 17	-25 ± 17

 $\Rightarrow (\bar{\nu}/q)_{\rm CC} \neq (\bar{\nu}/q)_{\rm R811}$ and $\xi_{\rm CC} \approx \xi_{\rm R811}$.

Final results

From our theoretical model, we calculate just below $T_{\rm ChI}$:

	CC	R811
$ar{ u}/q~({ m fN/K})$	11 ± 1	3 ± 1
$\xi~({ m fN/K})$	-35 ± 17	-25 ± 17

 $\Rightarrow (\bar{\nu}/q)_{\rm CC} \neq (\bar{\nu}/q)_{\rm R811}$ and $\xi_{\rm CC} \approx \xi_{\rm R811}$.

- We have confirmed theoretically and experimentally the existence of the Akopyan & Zel'dovich coupling.
- Typical order of magnitude of 10 fN/K.
- $\bar{\nu}/q$ depends on the chiral dopant, contrary to ξ .

Outline

1 Introduction

- 2) Thermomechanical effects of Leslie, Akopyan and Zel'dovich
- Lehmann rotation of cholesteric and nematic droplets
 Lehmann effect in cholesteric droplets
 Lehmann effect in nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion
Outline

1 Introduction

2) Thermomechanical effects of Leslie, Akopyan and Zel'dovich

Lehmann rotation of cholesteric and nematic droplets
Lehmann effect in cholesteric droplets

• Lehmann effect in nematic droplets

Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

A quick reminder

Questions

- What is the texture inside the droplets?
- Is there a scaling law for the angular velocity ω_d ?

Optical micrographs

 $\rm CCN\text{-}37$ + R811 or CC: planar anchoring at the droplet interface

Guilhem Poy

Numerical minimization of the free energy

• Unit director field:
$$n_s = \underset{n, |n|=1}{\operatorname{argmin}} F[n]$$

Numerical minimization of the free energy

• Unit director field:
$$n_s = \underset{n, |n|=1}{\operatorname{argmin}} F[n]$$

• Discretization with Q_1 finite elements: $F[\mathbf{n}] \to f(\mathbf{N})$ with $\mathbf{N} = \begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_M \end{pmatrix}$

Numerical minimization of the free energy

• Unit director field:
$$n_s = \underset{n, |n|=1}{\operatorname{argmin}} F[n]$$

- Discretization with Q_1 finite elements: $F[\mathbf{n}] \rightarrow f(\mathbf{N})$ with $\mathbf{N} = \begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_M \end{pmatrix}$
- Iterative minimization:
 - * $N_{(k)}$ verifying $n_{\beta} \cdot n_{\beta} = 1$
 - $\star \ \mathbf{N}_{(k+1)} = \mathcal{P}\left(\mathbf{N}_{(k)} + \boldsymbol{\delta N}\right), \text{ where } \mathcal{P} \text{ is the normalization operation } \mathbf{n}_{\beta} \to \mathbf{n}_{\beta}/\left|\mathbf{n}_{\beta}\right|$
 - $\star \delta N$ found with the truncated conjugate gradient algorithm (trust region strategy)

Essential properties of this algorithm

• $f(\mathbf{N}_{(k+1)}) < f(\mathbf{N}_{(k)})$: the energy always decreases

Essential properties of this algorithm

- $f(\mathbf{N}_{(k+1)}) < f(\mathbf{N}_{(k)})$: the energy always decreases
- Quadratic convergence near the minimum

Essential properties of this algorithm

- $f(\mathbf{N}_{(k+1)}) < f(\mathbf{N}_{(k)})$: the energy always decreases
- Quadratic convergence near the minimum
- Unit director field at each step: only 2M degree of freedoms in 3D

Results for a typical droplet of CCN-37

 $R = 19 \,\mu\text{m}, P = 30 \,\mu\text{m}, l_a = 0.82 \,\mu\text{m}$ (planar anchoring)

Guilhem Poy

Angular velocities

Angular velocities

Angular velocities

Data obtained with a different chiral dopant rescale on the same master curve.

Guilhem Poy

Lehmann effect

Ljubljana 19 / 32

New problematic

Rotation because of the microscopic or macroscopic chirality?

New problematic

Rotation because of the microscopic or macroscopic chirality?

 $\bullet\,$ microscopic chirality $\Leftrightarrow\,$ chiral molecules

-0000°

New problematic

Rotation because of the microscopic or macroscopic chirality?

 $\bullet\,$ microscopic chirality $\Leftrightarrow\,$ chiral molecules

0000

macroscopic chirality ⇔ twisted texture (helix in at least one direction)

Lehmann effect in cholesteric droplets

New problematic

Possible tests:

chiral molecules \leftrightarrow cholesteric no macroscopic twist (compensated)

Thermal gradient \Rightarrow no rotation

no chiral molecules \leftrightarrow nematic macroscopic twist

Thermal gradient \Rightarrow rotation?

Lehmann effect in cholesteric droplets

New problematic

Possible tests:

chiral molecules \leftrightarrow cholesteric no macroscopic twist (compensated)

Thermal gradient \Rightarrow no rotation

no chiral molecules \leftrightarrow nematic macroscopic twist

Thermal gradient \Rightarrow rotation?

Question

Can we observe the Lehmann effect in droplets of a **nematic achiral phase** with a **chiral director field**?

Guilhem Poy

Lehmann effect

Outline

1 Introduction

2) Thermomechanical effects of Leslie, Akopyan and Zel'dovich

Lehmann rotation of cholesteric and nematic droplets
 Lehmann effect in cholesteric droplets

• Lehmann effect in nematic droplets

Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

Lehmann effect in nematic droplets

Stability of bipolar configuration

• Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$

- Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$
- Achiral phase, with random handedness of the twist inside the droplets

- Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$
- Achiral phase, with random handedness of the twist inside the droplets
- The sign of twist fixes the sign of the angular velocity \Rightarrow two senses of rotation

- Lyotropic chromonic nematic used: water + 30% SSY $(K_2/K_1 \simeq 0.16, K_2/K_3 \simeq 0.12)$
- Achiral phase, with random handedness of the twist inside the droplets
- The sign of twist fixes the sign of the angular velocity ⇒ two senses of rotation

Rotation only due to the twist of the director field

Rotation periods

• Angular velocity $\omega_d = 2\pi/\Theta_d$ proportional to G.

Rotation periods

- Angular velocity $\omega_d = 2\pi/\Theta_d$ proportional to G.
- Period Θ_d proportional to the radius R.

Outline

1 Introduction

- 2) Thermomechanical effects of Leslie, Akopyan and Zel'dovich
- 3 Lehmann rotation of cholesteric and nematic droplets
- Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

Thermomechanical model of the Lehmann effect

• Rotation "in block" of the texture without flow:

$$\frac{\mathrm{D}}{\mathrm{D}\Theta} \Big(F[\boldsymbol{n}] \Big) = 0$$

 $D/D\Theta$: change rate associated with a rotation of the texture.

Thermomechanical model of the Lehmann effect

• Rotation "in block" of the texture without flow:

$$\frac{\mathrm{D}}{\mathrm{D}\Theta} \Big(F[\boldsymbol{n}] \Big) = 0$$

 $\mathrm{D}/\mathrm{D}\Theta\text{:}$ change rate associated with a rotation of the texture.

• Using the torque equation $\Gamma^{(E)} + \Gamma^{(V)} + \Gamma^{(TM)} = 0$, we can find a prediction for the angular velocity of the droplet.

Results with nematic droplets of water + 30 % SSY

• Theoretical prediction:

$$\Theta_d \, G = \frac{R}{\xi \, L_{\xi}[\boldsymbol{n}]}$$

Results with nematic droplets of water + 30 % SSY

• Theoretical prediction:

$$\Theta_d \, G = \frac{R}{\xi \, L_{\xi}[\boldsymbol{n}]}$$

- Numerical fit: $(\xi)_{\rm fit} \approx 70 \, {\rm pN/K}$
- Measured value in CCN-37 below $T_{\rm ChI}$: $\xi \approx 30 \, {\rm fN/K}$

Qualitative agreement. Quantitative agreement?

Themomechanical effects vs. Lehmann effect

Results with cholesteric droplets of CCN-37

• Theoretical prediction:

$$\frac{\omega_d}{q\,G} = \left[\bar{\nu}/q\right] L_{\nu}[\boldsymbol{n}] + \xi \, L_{\xi}[\boldsymbol{n}]$$

Results with cholesteric droplets of CCN-37

• Theoretical prediction:

 $\frac{\omega_d}{q \, G} = \left[\bar{\nu}/q\right] L_{\nu}[\boldsymbol{n}] + \xi \, L_{\xi}[\boldsymbol{n}]$

• Numerical fit: $(\bar{\nu}/q)_{\rm fit} \approx 1.7 \,\mathrm{pN/K}$ $(\xi)_{\rm fit} \approx -3 \,\mathrm{pN/K}$ \Rightarrow values 100 bigger than those measured below $T_{\rm ChI}$ $(\sim 10 \,\mathrm{fN/K}).$

Qualitative and quantitative disagreement.

Guilhem Poy

Outline

1 Introduction

- 2) Thermomechanical effects of Leslie, Akopyan and Zel'dovich
- 3 Lehmann rotation of cholesteric and nematic droplets
- **1** Importance of the thermomechanical effects in the Lehmann effect

5 Conclusion

• Experimental and theoretical confirmation of the existence of the (corrected) Akopyan & Zel'dovich coupling terms.

- Experimental and theoretical confirmation of the existence of the (corrected) Akopyan & Zel'dovich coupling terms.
- The Lehmann effect can be observed in twisted nematic droplets.
- Experimental and theoretical confirmation of the existence of the (corrected) Akopyan & Zel'dovich coupling terms.
- The Lehmann effect can be observed in twisted nematic droplets.
- The Leslie, Akopyan & Zel'dovich thermomechanical terms cannot explain the Lehmann effect.

Postdoc project

Simulation of natural and polarized light micrographs of nematic and cholesteric droplets.

- Hamiltonian ray-tracing method: $\dot{\boldsymbol{\eta}} = \boldsymbol{\Omega} \cdot \boldsymbol{\nabla}_{\boldsymbol{\eta}} (H^{e,o}),$ with $\boldsymbol{\eta} = (\boldsymbol{r}, \boldsymbol{k}).$
- Conserved quantities along a ray: $(\sqrt{q} n_{\text{eff}} E)$ and $(\sqrt{q} B)$, with q the geometrical spreading.

$$\begin{array}{ccc} \bigwedge & \uparrow & \uparrow & & \uparrow & \uparrow & \\ q > 1 & & q = 1 & & q < 1 \end{array}$$

Deviation of extraordinary rays in a cholesteric slab:

Thank you!

Conclusion

In the future...

- Why the droplets stay spherical in a temperature gradient?
- Importance of the theoretical model of A. Dequidt in the Lehmann effect?

• Convective rolls? Marangoni and/or thermohydrodynamic couplings?

Conclusion

Photobleaching experiment

- LC mixture doped with fluorescent molecules
- Gaussian beam of a laser focalized near a rotating droplet