Improved ray-tracing for slowly varying director field: Simulation of optical micrographs of nematic and cholesteric droplets

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

July 27, 2018

Outline

1 Ray-tracing method in birefringent media

- 2 Validation on a simple test-case
- 3 Application to the visualisation of cholesteric and nematic droplets

4 Conclusion

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al
- Second limitation: deflection of the extraordinay rays.
 How to explain the non-zero contrast of natural light micrographs?

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al
- Second limitation: deflection of the extraordinay rays.
 How to explain the non-zero contrast of natural light micrographs?

Question

Can we design an efficient method to simulate natural light micrographs of LC samples, including light deviation effects?

Ray-tracing method in birefringent media

The improved ray-tracing method

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda}$ + Mauguin regime

• Evolution of extraordinary and ordinary rays: Hamilton Eqs.

Ray-tracing method in birefringent media

The improved ray-tracing method

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda}$ + Mauguin regime

• Evolution of extraordinary and ordinary rays: Hamilton Eqs.

• New result: $n_{\rm eff} \sqrt{q} E$ and $\sqrt{q} B$ are conserved along a ray

Outline

Ray-tracing method in birefringent media

2 Validation on a simple test-case

3 Application to the visualisation of cholesteric and nematic droplets

4 Conclusion

Incident plane wave on a transverse cholesteric helix: Poynting vector field \boldsymbol{S} inside the cholesteric phase?

Two methods of resolution:

- Our improved ray-tracing method
- Exact resolution of Maxwell Eqs. (FDTD)

Results

Results

Fast and accurate reconstruction of \boldsymbol{S} far from the caustic boundaries

Guilhem Poy

Improved ray-tracing

Outline

- Ray-tracing method in birefringent media
- 2 Validation on a simple test-case

3 Application to the visualisation of cholesteric and nematic droplets

Conclusion

Setup

Two studied mixtures, with two different origin for the twist:

- CCN-37 + R811: spontaneous twist q_0 of the cholesteric phase
- SSY + water: giant elastic anisotropy $K_2 \ll K_{1,3}$

Setup

Two studied mixtures, with two different origin for the twist:

- CCN-37 + R811: spontaneous twist q_0 of the cholesteric phase
- SSY + water: giant elastic anisotropy $K_2 \ll K_{1,3}$

Natural light micrographs: average over all polarisation states.

Cholesteric twisted bipolar droplet (CCN-37+R811)

Deflection map (extraordinay rays)

Nematic twisted bipolar droplet (SSY in water)

Deflection map (extraordinay rays)

Outline

- Ray-tracing method in birefringent media
- 2) Validation on a simple test-case
- **3** Application to the visualisation of cholesteric and nematic droplets
- Conclusion

Conclusion and outlook

 \bullet New method with fast and accurate reconstruction of ${\boldsymbol S}$ far from caustics.

Conclusion and outlook

- New method with fast and accurate reconstruction of \boldsymbol{S} far from caustics.
- Good agreement with experimental micrographs of twisted bipolar droplets.

Conclusion and outlook

- New method with fast and accurate reconstruction of \boldsymbol{S} far from caustics.
- Good agreement with experimental micrographs of twisted bipolar droplets.
- Perspectives:
 - $\star\,$ Beyond the Mauguin regime: elliptic polarisations
 - $\star~$ Role of numerical aperture?
 - $\star\,$ Link between chirality and symmetry-breaking in micrographs?
 - $\star\,$ New systems: skyrmions, cholesteric fingers, banded droplets...

Thank you for your attention!

Two sources of discontinuity

Mapping $x_i \rightarrow x_f$:

- No caustics: one-to-one correspondance
- Caustic domains: many-to-one correspondance

Two sources of discontinuity

Mapping $x_i \rightarrow x_f$:

- No caustics: one-to-one correspondance
- Caustic domains: many-to-one correspondance

Optical index discontinuity: generic Fresnel boundary conditions