Improved ray-tracing for slowly varying director field: Simulation of optical micrographs of nematic and cholesteric droplets

Guilhem Poy

Faculty of Physics and Mathematics, Ljubljana

July 27, 2018
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of cholesteric and nematic droplets
4. Conclusion
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al

Question: Can we design an efficient method to simulate natural light micrographs of LC samples, including light deviation effects?
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture ⇒ generalized Jones method by Mur et al
- Second limitation: deflection of the extraordinary rays.

How to explain the non-zero contrast of natural light micrographs?
Motivations

Transmission of an arbitrary birefringent sample between polariser and analyzer: Jones method

- First limitation: numerical aperture
 ⇒ generalized Jones method by Mur et al
- Second limitation: deflection of the extraordinary rays.
 How to explain the non-zero contrast of natural light micrographs?

Question

Can we design an efficient method to simulate natural light micrographs of LC samples, including light deviation effects?
The improved ray-tracing method

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda} + \text{Mauguin regime}$

- Evolution of extraordinary and ordinary rays: Hamilton Eqs.
The improved ray-tracing method

Working hypotheses: $|\nabla n| \sim \frac{1}{L} \ll \frac{1}{\lambda} + \text{Mauguin regime}$

- Evolution of extraordinary and ordinary rays: Hamilton Eqs.
- New result: $n_{\text{eff}} \sqrt{q} E$ and $\sqrt{q} B$ are conserved along a ray
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of cholesteric and nematic droplets
4. Conclusion
Validation on a simple test-case

Setup

Incident plane wave on a transverse cholesteric helix: Poynting vector field \mathbf{S} inside the cholesteric phase?

Two methods of resolution:

- Our improved ray-tracing method
- Exact resolution of Maxwell Eqs. (FDTD)
Validation on a simple test-case

Results

FDTD simulation

Ray tracing simulation

Horizontal profile

Vertical profile
Validation on a simple test-case

Results

Fast and accurate reconstruction of S far from the caustic boundaries
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of cholesteric and nematic droplets
4. Conclusion
Two studied mixtures, with two different origin for the twist:

- CCN-37 + R811: spontaneous twist q_0 of the cholesteric phase
- SSY + water: giant elastic anisotropy $K_2 \ll K_{1,3}$
Two studied mixtures, with two different origin for the twist:

- **CCN-37 + R811**: spontaneous twist q_0 of the cholesteric phase
- **SSY + water**: giant elastic anisotropy $K_2 \ll K_{1,3}$

Natural light micrographs: average over all polarisation states.
Applications

Cholesteric twisted bipolar droplet (CCN-37+R811)

Deflection map (extraordinary rays)

simulation

experiment

Deflection amplitude (μm)

Guilhem Poy

Improved ray-tracing

Kyoto 6 / 8
Nematic twisted bipolar droplet (SSY in water)

Deflection map (extraordinary rays)
Outline

1. Ray-tracing method in birefringent media
2. Validation on a simple test-case
3. Application to the visualisation of cholesteric and nematic droplets
4. Conclusion
Conclusion and outlook

- New method with fast and accurate reconstruction of S far from caustics.
Conclusion and outlook

- New method with fast and accurate reconstruction of S far from caustics.
- Good agreement with experimental micrographs of twisted bipolar droplets.
Conclusion and outlook

- New method with fast and accurate reconstruction of S far from caustics.
- Good agreement with experimental micrographs of twisted bipolar droplets.
- Perspectives:
 - Beyond the Mauguin regime: elliptic polarisations
 - Role of numerical aperture?
 - Link between chirality and symmetry-breaking in micrographs?
 - New systems: skyrmions, cholesteric fingers, banded droplets...
Thank you for your attention!
Two sources of discontinuity

Mapping $\mathbf{x}_i \rightarrow \mathbf{x}_f$:

- No caustics: one-to-one correspondance
- Caustic domains: many-to-one correspondance
Conclusion

Two sources of discontinuity

Mapping $\mathbf{x}_i \rightarrow \mathbf{x}_f$:

- No caustics: one-to-one correspondance
- Caustic domains: many-to-one correspondance

Optical index discontinuity: generic Fresnel boundary conditions