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Role of anchoring energy on the texture of cholesteric droplets:
Finite-element simulations and experiments
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We present a numerical method to compute defect-free textures inside cholesteric domains of arbitrary shape.
This method has two interesting properties, namely a robust and fast quadratic convergence to a local minimum of
the Frank free energy, thanks to a trust region strategy. We apply this algorithm to study the texture of cholesteric
droplets in coexistence with their isotropic liquid in two cases: when the anchoring is planar and when it is tilted.
In the first case, we show how to determine the anchoring energy at the cholesteric-isotropic interface from a
study of the optical properties of droplets of different sizes oriented with an electric field. This method is applied
to the case of the liquid crystal CCN-37. In the second case, we come back to the issue of the textural transition as
a function of the droplet radius between the double-twist droplets and the banded droplets, observed for instance
in cyanobiphenyl liquid crystals. We show that, even if this transition is dominated by the saddle-splay Gauss
constant K4, as was recently recognized by Yoshioka et al. [Soft Matter 12, 2400 (2016)], the anchoring energy
does also play an important role that cannot be neglected.
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I. INTRODUCTION

In a free cholesteric phase, the director �n rotates around
a single space direction by forming the so-called equilibrium
cholesteric helix. When the cholesteric phase is confined, for
instance inside a droplet, the helix is deformed due to the
anchoring conditions on the droplet surface. If the anchoring
is sliding in the plane of the surface, which we assume in this
paper, the anchoring potential γ only depends on the angle
θ between the director and the normal to the surface �ν and
passes through a minimum for a preferred angle θa with γ (θ ) ∼
Wa(θ − θa)2 at small deviations |θ − θa| � 1. Angle θa is
called the anchoring angle and Wa is the anchoring energy.

Previous studies [1–7] have shown that the texture of a
cholesteric droplet (defined by its internal vector field �n) can
be extremely various. Let K be a typical Frank constant. Two
limit cases can be defined depending on the strength of the
anchoring: the strong anchoring regime when the extrapolation
length la = K/Wa is typically less than 0.1 μm and the
moderate and weak anchoring regime when la > 0.1 μm.

In the first regime (strong anchoring), the topological
constraints on the surface of the droplet usually induce a frus-
tration of the chiral ordering and the formation of topological
defects [1]. This regime is relevant in suspensions of liquid
crystal (LC) dispersed in an isotropic fluid such as water [2]
or in a polymer matrix (PDLC or polymer-dispersed liquid
crystal) [3]. This regime is theoretically interesting because
it allows the testing of fundamental topological properties
in frustrated systems and the characterization of complex
metastable structures [4]. This regime is also technologically
interesting, in particular in the field of the LC displays and
of the photonic devices: in these applications, electric field
and/or lasers can be used to manipulate the internal texture of
the droplet and modify its optical properties [5].

In the second regime (moderate and weak anchoring), the
topological constraints are generally not strong enough to
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stabilize the defects in the bulk of the droplet, which leads to
more simple structures. This regime is relevant in cholesteric
droplets in thermodynamic coexistence with the isotropic
phase of the same LC, because the surface tension, and thus
the anchoring energy, is much smaller than in the previous LC
suspensions and PDLCs. Experimentally, the textures inside
such droplets were studied by Yoshioka et al. [6] and by one of
us (P.O.) [7], who, respectively, observed a structural transition
between two types of textures in a static case and in a dynamic
case.

In principle, the knowledge at each point of the droplet of
the full tensorial-order parameter is necessary to completely
characterize the texture. This is crucial, in particular when
the droplet contains defects. In contrast, knowing the director
field is sufficient when there is no defects, because, in this
case, the scalar-order parameter can be taken as a constant
everywhere. Theoretically, the director field is obtained by
minimizing the Frank elastic energy augmented with the
appropriate penalization terms (such as the electric energy,
the anchoring energy, the Lagrange term accounting for the
fact that �n is a unit vector, etc.). This minimization can
rarely be done analytically, and in general, one must rely
on experimental and/or numerical methods to reconstruct the
director field. For instance, Posnjak et al. [2] showed that the
director field can be automatically reconstructed by using a
fluorescent confocal polarizing microscopy combined with a
Monte Carlo algorithm. The main limitation of this method
is that the birefringence �n of the LC must be very small to
avoid optical artifacts.

Numerical methods do not suffer from such limitations and
are an efficient tool to study the structures inside cholesteric
droplets. If the chiral ordering is strongly frustrated (strong
anchoring), one must take into account the variation of the
order parameter inside the core of the defects and numerically
minimize the full Landau–Ginzburg–de Gennes free energy.
The minimization is usually done with an Euler relaxation
scheme [1,4], which is formally equivalent to a gradient
descent algorithm. Alternatively, Bajc et al. [8] recently
proposed a hybrid method that uses either the Newton method
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or the gradient descent method when the convergence is
difficult.

If there is no defects in the structure—as assumed in this
paper—one can take the order parameter constant and only
minimize the Frank free energy. Two classes of numerical
methods were proposed to minimize the Frank free energy.
First, one can use a gradient descent algorithm, as done for
instance by Gil et al. [9]. But this method, although very
robust, presents a slow linear convergence, which can become
problematic when studying large 3D domains. Second, a
Newton method can be used, as proposed by Adler et al. [10]
or Gartland et al. [11]. This algorithm has a fast quadratic
convergence but presents severe limitations: it can converge to
any stationary point (including a maximum of the free energy)
and can diverge if a singular Hessian is encountered.

In this paper, we present a numerical method to minimize
the Frank free energy with a robust quadratic convergence,
thus overcoming the limitations of the gradient descent and
Newton algorithms.

The plan of the paper is as follows. In Sec. II, we describe
our minimization algorithm, based on a finite-element (FE)
discretization of the Frank free energy. In Secs. III and IV,
we address two problems with this algorithm: the one of
the measurement of the anchoring energy at the cholesteric-
isotropic interface when the anchoring is planar (Sec. III) and
the one of the structural transition between the double-twist
droplets and the banded droplets when the anchoring is tilted
and the anchoring energy not negligible (Sec. IV). Finally, we
draw our conclusions in Sec. V.

II. THE TRUST-REGION ALGORITHM

In this section, we explicit the trust-region algorithm used
to find the texture inside cholesteric droplets with finite
anchoring energy. This algorithm is based on the renormalized
Newton method introduced by Gartland et al. [11], with three
main differences: the discretization is made on an arbitrary
unstructured grid instead of a regular one, a trust-region
method is used instead of a Newton method, and an algebraic
multigrid preconditioner is used to help the convergence.

A. Continuous optimization problem

First, we recall that the texture inside a droplet corresponds
to the unit director field �ns , which minimizes the free energy:

�ns = argmin
�n,|�n|=1

F [�n], (1)

where the free energy F [�n] = Ff [�n] + Fe[�n] + Fs[�n] is the
sum of the Frank energy Ff , the electric energy Fe, and
the anchoring energy Fs . The detailed expressions of all
contributions are given in Ref. [12]:

Ff [�n] =
∫

V

dV

2
{K4|

⇒
∇�n|2 + 2K2q(�n · �∇ × �n) + K14( �∇ · �n)2

+K34( �∇ × �n)2 + K23(�n · �∇ × �n)2}, (2)

Fe[�n] = −
∫

V

dV
ε0εa

2
( �E · �n)2, (3)

Fs[�n] =
∫

S

dS γ (�n · �ν), (4)

where Kij = Ki − Kj,[
⇒
∇�n]ij = nj,i , |

⇒
∇�n|

2
= nj,i nj,i , the Ki

are the Frank elastic constants, q is the equilibrium twist, εa is
the anisotropy of the dielectric constant, �E is the electric field,
and γ is the anchoring potential of the cholesteric-isotropic
interface. Note that in the one-constant approximation Ki =
K , only the K2q and K4 terms in Ff [�n] are nonzero. In
addition, the Ki must obey the Ericksen inequalities [13]:

Ki � 0, K4 � min (2K2,2K1). (5)

Due to the symmetries of both the isotropic and cholesteric
phases, the anchoring potential can be expressed as an even
function of �n · �ν, where �ν is the normal to the interface:

γ (�n · �ν) =
⎧⎨
⎩

Wa(�n · �ν)2(planar anchoring),

Wa

[
(�n·�ν)2−cos2 θa

sin 2θa

]2
(tilted anchoring).

(6)

In this equation, θa is the anchoring angle (with 0 � θa � π/2)
and Wa is the anchoring energy as defined in the introduction
(with Wa � 0).

To account for the constraint �n · �n = 1, we introduce
a pointwise Lagrange multiplier λ and the associated
Lagrangian:

L[�n,λ] = F [�n] +
∫

V

dV (�n · �n − 1)λ. (7)

The original problem given in Eq. (1) can therefore be rewritten
as the following optimization problem:

δL[�ns,λs] = 0, (8)

�ns = argmin
�n

L[�n,λs]. (9)

This problem is too difficult to be solved analytically, in
general. For this reason, we will discretize it using a finite-
element space.

B. Discretized optimization problem

Let {Ke, e = 0...M ′ − 1} be a nondegenerate subdivision
of the cholesteric domain V with distorted cubic (or hexa-
hedral) cells and {�xk, k = 0...M − 1} the associated vertices.
First, we use Q1 Lagrange elements to approximate �n and λ:

�n(�x) =
3M−1∑
i=0

Ni
�φi(�x), (10)

λ(�x) =
M−1∑
α=0

�α ψα(�x), (11)

where the functions { �φi,ψi} are piecewise trilinear functions
verifying the following relations:

�φi(�xk) = δ
q(i)
k �er(i),

ψα(�xk) = δα
k ,

with q(i) and r(i) the quotient and reminder of the division of
i by dim(V ) = 3,δi

j the Kronecker δ, and {�ek, k = 0...2} an
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orthonormal basis for V . Using the last two equations, we can
rewrite the vector of nodal director values as

N =

⎡
⎢⎣

�n0
...

�nM−1

⎤
⎥⎦, (12)

where �ni ≡ �n(�xi).
Second, we approximate all integrals

∫
V

· (respectively,
∫
S
·)

with the associated trapezoidal rule 〈·〉V (respectively, 〈·〉S):

〈g〉V ≡
M ′−1∑
e=0

7∑
j=0

ve

8
g
(�xpv (e,j )

)
, (13)

〈g〉S ≡
M ′−1∑
e=0

3∑
j=0

se

4
g
(�xps (e,j )

)
, (14)

where ve is the volume of Ke,se is the surface of the boundary
face associated with Ke (by convention, se = 0 if Ke is an
interior cell), pv(e,j ) is the global index of the j th vertex
on the cell Ke, and ps(e,j ) is the global index of the j th
vertex on the boundary face associated with Ke. This choice
of integration rule is not exact for the considered finite element
space and functional but will allow us to eliminate in a very
simple manner the constrained degrees of freedom.

Note that special care must be taken if the integrand in
Eqs. (13) and (14) contains gradients of the shape functions �φi

and ψα . Indeed, our choice of finite-element space implies that
the gradients of these functions are only piecewise continuous
and therefore ill-defined on the boundary of each cells. In this
case, Eq. (13) [Eq. (14)] must be computed cell by cell (face
by face) by replacing each value of the gradient at a vertex
with the continuous prolongation of the gradient inside the
considered cell (face).

Finally, we use Eqs. (10), (11) and (13), (14) in
Eq. (7) to find the discretized LagrangianLd (N,�) = f (N) +
C(N)ᵀ �, with

f (N) =
3M−1∑
i,j=0

�ijNiNj +
3M−1∑

i,j,k,l=0

�ijklNiNjNkNl, (15)

Cα(N) =
3M−1∑
i,j=0

〈ψα
�φi · �φj 〉V NiNj − 〈ψα〉. (16)

Detailed expressions for the tensors � and � are not necessary
for the following discussion. C can be interpreted as the vector
of all pointwise constraints.

We will use the following notation for the Hessian of the
Lagrangian, the gradient of the constraint vector, and the
gradient of the free energy:

A(N,�) = ∇N NLd (N,�),

B(N) = ∇N C(N),

G(N) = ∇Nf (N).

By replacingL byLd in Eqs. (8) and (9), and using Prop. 3.1.1.
in the Bertsekas textbook [14], we get the equivalent discrete

optimization problem:

G(N̄) + B(N̄) �̄ = 0, (17)

C(N̄) = 0, (18)

∀ δN ∈ H (N̄), δNᵀ [A(N̄,�̄)] δN � 0, (19)

where H (N̄) is the subspace of first-order feasible variations:

H (N̄) = {δN|δNᵀ B(N̄) = 0}.
Equation (17) corresponds to the first-order optimality con-
dition, and Eq. (18) is the feasibility condition. Equation
(19) shows that the curvature must be positive in all feasible
directions at the minimum.

C. Iterative solving

To solve the optimization problem in Eqs. (17)–(19), we
will use an iterative procedure. Let N (k) be the solution
obtained at the kth iteration. We will assume without loss of
generality that this solution verifies the constraint C(N (k)) = 0.
Indeed, this condition can be easily enforced by using Eq. (12)
and the transformation �ni → �ni / |�ni |.

Following Gartland et al. [11], we can compute an estimate
of the Lagrange multiplier by solving

�(k) = argmin
�

‖G(k) + B(k) �‖2,

where G(k) = G(N (k)) and B(k) = B(N (k)). This last equation
can be interpreted as the least square solution of the first-order
optimality condition in Eq. (17), whose expression is given by

�(k) = −[
Bᵀ

(k) B(k)
]−1

B(k) G(k). (20)

To compute the Lagrange multiplier �(k), we therefore need the
expressions of B(k), [Bᵀ

(k) B(k)]
−1, and G(k). The full expression

of the matrix B(k), of dimension 3M × M , can easily be
computed by differentiating Eq. (16):

B(k) =

⎡
⎢⎣

V0 �n0

. . .
VM−1 �nM−1

⎤
⎥⎦, (21)

where Vα = ∑M ′−1
e=0

∑7
j=0 ve δ

pv (e,j )
α is the volume of all the

cells containing the vertex �xα , and the �nα are the local values
of the director associated with N (k). Due to the very simple
structure of B(k), we can directly invert the matrix Bᵀ

(k) B(k):

[
Bᵀ

(k) B(k)
]−1 =

⎡
⎢⎣

1/V 2
0

. . .
1/V 2

M−1

⎤
⎥⎦, (22)

where we have used the normalization condition |�nα| = 1. Fi-
nally, the expression of G(k) can be obtained by differentiating
Eq. (15):

[G(k)]i = 〈K14( �∇ · �φi)( �∇ · �n)〉V + 〈[K2q + K23(�n · �∇ × �n)]

(�n · �∇ × �φi + �φi · �∇ × �n)〉V
+〈K34 ( �∇ × �φi) · ( �∇ × �n)〉V + 〈K4 (

⇒
∇ �φi) : (

⇒
∇�n)〉V

−〈ε0εa ( �E · �φi)( �E · �n)〉V + 〈γ ′(�n · �ν) �φi · �ν〉S, (23)
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where �n is the interpolating function associated with N (k) and
⇒
A :

⇒
B = ∑

i,j Aij Bij .
We now want to find an update δN , which improves the

current solution N (k), i.e., decrease the free energy while
keeping the constraints in check:

f (N (k) + δN) � f (N (k)),

C(N (k) + δN) = 0.

For now, let us suppose that the last two conditions are only
verified up to order 1 in δN:

δNᵀ G(k) � 0, (24)

δNᵀ B(k) = 0. (25)

Equation (25) implies that δN is in the null space (or kernel)
of the matrix B(k), i.e., there exists a vector δN⊥ of size 2M

such that

δN = Z(k) δN⊥,

where Z(k) is a matrix whose column space is the null space of
B(k). As in the algorithm of Gartland et al. [11], such a matrix
is very easy to find due to the simple expression of B(k):

Z(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

�l0 �m0

�l1 �m1

. . .

�lM−1 �mM−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (26)

where the �li and �m are constructed in order that ∀i, {�ni,�li , �mi}
is an orthonormal basis. By construction, the matrix Z(k), of
dimension 3M × 2M , verifies the property Zᵀ

(k) B(k) = 0. In
addition, the vector δN⊥ can be interpreted as the coordinates
of the vector δN in the local frames {�li , �mi}.

Equation (24) implies that δN is a descent direction for
the discretized energy f . To find the best possible descent
direction, we need to characterize the energy landscape in the
neighborhood of N (k). By developing the Lagrangian Ld up to

order 2 in δN and using the relation Zᵀ
(k) B(k) = 0, we arrive

at the following relation:

Ld (N (k) + δN,�(k)) = mk(δN⊥) + o(δN2),

where we have defined

mk(δN⊥) = f(k) + δNᵀ
⊥ G⊥(k) + 1

2δNᵀ
⊥ A⊥(k) δN⊥,

f(k) = f (N (k)),

G⊥(k) = Zᵀ
(k) G(k), (27)

A⊥(k) = Zᵀ
(k) A(k) Z(k), (28)

A(k) = A(N (k),�(k)).

The function mk represents a quadratic model of the La-
grangian valid only in a certain neighborhood of N (k).
Consequently, the best descent direction can be computed
from the minimum of mk on this neighborhood. To estimate
the typical size of this neighborhood, we use a trust-region
strategy. Let �k be the trust radius associated with the model
mk . A good choice for the descent direction would be to take

δN⊥ = argmin
δN⊥, ‖δN⊥‖��k

mk(δN⊥). (29)

In practice, we approximate the solution of the last equation
as the output of the truncated conjugate gradient (TCG)
algorithm of Steihaug [15], with an algebraic multigrid (AMG)
preconditioner based on the Trilinos ML implementation [16].
The TCG algorithm allows us to find a direction which
satisfies the descent condition in Eq. (24) and has two
interesting properties: far from (near) the minimum N̄,δN
will corresponds to the Cauchy (Newton) direction. The first
property ensures that the convergence is robust, even when
starting far from the minimum, and the second property ensures
a quadratic convergence toward N̄ .

The TCG algorithm requires the values of the reduced
gradient G⊥(k) and of the reduced Hessian A⊥(k), which can
be assembled from Z(k),G(k), and A(k). The expressions of
G(k) and Z(k) were already given in Eqs. (23) and (26). The
expression of A(k) can be obtained by differentiating two times
the Lagrangian Ld :

[A(k)]ij = 〈K14 ( �∇ · �φi)( �∇ · �φj )〉V + 〈[K2q + K23(�n · �∇ × �n)] ( �φj · �∇ × �φi + �φi · �∇ × �φj )〉V
+〈K23 (�n · �∇ × �φi + �φi · �∇ × �n)(�n · �∇ × �φj + �φj · �∇ × �n)〉V + 〈K34 ( �∇ × �φi) · ( �∇ × �φj )〉V
+〈K4 (

⇒
∇ �φi) : (

⇒
∇ �φj )〉V − 〈ε0εa ( �E · �φi)( �E · �φj )〉V + 〈γ ′′(�n · �ν) ( �φi · �ν)( �φj · �ν)〉S + 〈λ �φi · �φj 〉V , (30)

where λ is the interpolating function associated with �(k).
There are two main assumptions in the TCG algorithm: the

Hessian must be symmetric (but not necessarily positive and
definite), and the preconditioner must be symmetric positive
definite (SPD). Although the first hypothesis is always verified,
we empirically noticed that far from the minimum, the AMG
preconditioner is not necessarily SPD, which is very often
linked with an artificial convergence in only one step. For
this reason, we recompute the descent direction with the
unpreconditioned TCG algorithm when the preconditioned

TCG algorithm has converged in only one step. With this
empirical criterion, the computed solution always verifies
the descent condition given in Eq. (24) and the inequality
mk(δN⊥) � mk(0).

Once the descent direction δN is computed from the TCG
algorithm, one needs to check a posteriori the validity of the
quadratic model mk . First, we compute the updated value of
the solution P(N (k) + δN), where P represents the operation
of normalisation of each local director value �ni → �ni/|�ni |.
Second, we compute the trust ratio ρk , defined as the ratio
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between the actual and predicted energy reduction:

ρk = f [P(N (k) + δN)] − f (N (k))

mk(δN⊥) − mk(0)
. (31)

Last, we apply the following update rules:

N (k+1) =
{
P

(
N (k) + δN

)
if ρk > 0

N (k) if ρk � 0
, (32)

�k+1 =
⎧⎨
⎩

γ2 �k if ρk > η2

�k if ρk ∈]η1,η2]
γ1 �k if ρk � η1

, (33)

with 0 < η1 � η2 < 1 and 0 < γ1 < 1 < γ2. Equation (32)
implies that we keep the step only if the energy has decreased,
and Eq. (33) allows us to dynamically update the trust radius.
In particular, the trust radius is always decreased if the trust
ratio is too small (in which case, we do not trust our quadratic
model).

We can now present a formal statement of our algorithm:
(1) Initialization: Choose N (0) verifying C(N (0)) = 0,

and parameters �0, η1,2, and γ1,2. Set k = 0.
(2) Assembling:

(i) Compute B(k), [Bᵀ
(k) B(k)]

−1 and G(k) using
Eqs. (21), (22), and (23).

(ii) Compute the Lagrange multiplier �(k) with Eq. (20).
(iii) Compute the Hessian A(k) with Eq. (30).
(iv) Compute the null space matrix Z(k) with Eq. (26).
(v) Compute the reduced gradient G⊥(k) and Hessian

A⊥(k) with Eqs. (27) and (28).
(3) Solving:

(i) Find the vector δN⊥ which approximately solve
Eq. (29) with the preconditioned TCG algorithm.

(ii) If the TCG algorithm has converged in only one
step, restart the TCG algorithm without preconditioner.

(iii) Compute the solution update:
δN = Z(k) δN⊥.
(4) Update:

(i) Compute P(N (k) + δN) and ρk with Eq. (31).
(ii) Compute N (k+1) and �k+1 with Eqs. (32) and (33).
(iii) If ρk > 0 and |f (N (k+1)) − f (N (k))| < 10−16,

stop, else set k = k + 1 and go to step 2.
In this algorithm, the stopping criterion is based on the

energy variation between two consecutive steps, but a stopping
criterion based on the residual [i.e., the norm of the first-order
optimality condition in Eq. (17)] is also valid. On a practical
note, our algorithm was implemented in C++, and the finite
element library Deal.II [17] was used to assemble the matrices
and vectors.

Note that our algorithm can theoretically converge to a
saddle point if it never encounters a direction δN along which
the curvature δNᵀ A(k) δN is negative. To ensure that the
computed texture corresponds to a minimum of the free energy,
we need to check the validity of Eq. (19) at the end of our
algorithm: the final reduced Hessian must be SPD. This can
be efficiently checked by using the fact that the Cholesky
decomposition of a matrix exists if and only if this matrix
is SPD [18]. Using the library CHOLMOD, we successfully
computed the Cholesky decomposition of the final reduced
Hessian for all the computed textures. This shows that all these
textures indeed correspond to a minima of the free energy.

In the following, we give two examples of application of
our numerical code.

III. MEASUREMENT OF THE ANCHORING ENERGY AT
THE CHOLESTERIC-ISOTROPIC INTERFACE OF

TWISTED BIPOLAR DROPLETS

In this section, we use our algorithm to measure the
anchoring energy at the cholesteric-isotropic (ChI) interface
when the anchoring is planar. In this case, the cholesteric
droplets often contain two diametrically opposed point defects
[bipolar structure, Fig. 1(a)]. Here we show experimentally
and numerically that for a LC of negative dielectric anisotropy,
it is possible, by applying a high electric field, to stretch these
point defects into surface disclination lines [Fig. 1(b)]. These
defects have a minimal energy when there is no twist inside the
droplet, whereas the bulk energy is minimal when the twist is
equal to the equilibrium twist. This energetic competition leads
to a partially unwound helix in the direction of the electric field
that is detectable optically. As this effect strongly depends
on the ratio R/la of the droplet radius R over the anchoring
extrapolation length la = K1/Wa , it can be used to measure
la . We emphasize that all the surface defects we are speaking
about in this paper are virtual, which means that their singular

E = 0

(a)

E = 0

(b) E

FIG. 1. Two configurations of a cholesteric droplet when the
anchoring is planar at the surface and the LC is of negative dielectric
anisotropy. In panel (a), there is no electric field and the droplet
adopts a bipolar structure with two virtual point defects diametrically
opposed (defining the polar axis). Only the director field lines on the
surface of the droplet are represented (orange lines). In panel (b), an
electric field E is applied vertically. In this case, the two point defects
are stretched into two virtual surface disclination lines (thick solid
and dashed lines). The director field lines are the orange solid lines.
By convention, we will call “polar axis” the axis drawn in blue solid
line that joins the two disclination lines in the equatorial plane. For
the sake of simplicity, the configuration represented here corresponds
to the limit Wa → ∞ and E → ∞.
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core is out of the droplets, in the isotropic liquid. For this
reason, these point (line) defects correspond to localized disk
(ribbon)-shaped regions on the surface, where the anchoring
conditions are not satisfied and the anchoring energy is very
high.

A. Experimental procedure

To detect the helix distortion induced by the electric field
inside the droplets, we measured their optical transmission
between crossed polarizer and analyzer as a function of their
orientation with respect to the polarizer, when their “polar
axis” (defined in the caption of Fig. 1) is parallel to the glass
plates. This orientation is forced by the electric field since the
LC is of negative dielectric anisotropy. If the temperature is
homogeneous, the droplets are fixed and this measurement can
only be performed by rotating either the sample or the analyzer
and the polarizer simultaneously, which is not convenient.
For this reason, we simplified the measurement by taking
advantage of the Lehmann effect [19,21,22]. Indeed, it was
known for a long time that the internal texture of cholesteric
droplets slowly rotates when the droplets are subjected to a
small temperature gradient G. We used this effect to directly
measure the optical transmission as a function of time by
assuming that the texture of the droplets remains the same
as at equilibrium during the rotation. Knowing the period
of rotation, we then deduced the optical transmission as
a function of the angle between the “polar axis” and the
polarizer.

In practice, we used the same two-ovens experimental setup
and the same procedure as in Ref. [22] to observe the Lehmann
effect. In brief, each sample is constituted of two glass plates
separated by nickel wires of calibrated diameter. The plates are
covered by two layers: an ITO layer, which allows us to orient
the cholesteric droplets with a 10 kHz vertical electric field
of 0.75 V/μm, and a 20-nm-thin polymercaptan layer, which
ensures a planar sliding anchoring and a good dewetting of the
cholesteric phase on the plates. Note that the ITO layer was re-
moved in the vicinity of the nickel wires to avoid a short-circuit,
and that heating effect due to the ITO layer remains moderate
at 10 kHz [23] and can be corrected by slightly decreasing
the mean temperature of the sample. The sample thickness
h was measured with a spectrometer to within ±0.1 μm
before each experiment. Each sample was filled with the liquid
crystal CCN-37 (4α,4′ α-propylheptyl-1α,1′ α-bicyclohexyl-
4β-carbonitriles from Nematel, Germany) doped with a mass
fraction C = 0.527 wt.% of the chiral molecule R811 (R-
[+]-octan-2-yl 4-[{4-(hexyloxy)benzoyl}oxy] benzoate from
Merck, Germany). This mixture was already characterized by
Oswald et al. [19]. The values of the main physical constants
used in our calculations are given at the transition temperature
TChI in Table I. Once filled, each sample was sandwiched
between two ovens regulated to within ±1/100 ◦C. Two
very thin layers of glycerol ensured a good thermal contact
between the sample and the ovens. In these conditions, the
sample is subjected to a temperature gradient G proportional
to the difference of temperature �T = T+ − T− between the
two ovens. Droplets are nucleated near the cold plate by
setting the mean temperature of the sample T̄ = (T+ + T−)/2
to be between temperature Tsol, at which the cholesteric

TABLE I. Values at the transition temperature of the main
physical constants of the mixture CCN-37+0.527 wt.% R811 [19].
Note that the value of K4 was estimated with the theoretical relation
K4 = (K1 + K2)/2. This formula was first obtained by Nehring and
Saupe (with a different convention for the definition of the Ki) from
a molecular Cauchy-like approach [20].

Constants Values at TChI

K1 (pN) 0.96
K2 (pN) 0.84
K3 (pN) 1.37
K4 (pN) 0.90
q (μm−1) 0.308
εa −2.34
�n 0.016

phase starts melting, and temperature Tliq, at which the
sample is completely isotropic. We estimated that the freez-
ing range is typically Tliq − Tsol ≈ 0.1◦C. The radii of the
droplets can be changed by adjusting T̄ while keeping �T

constant.
We now return to the measurement of the optical

transmittance. Because of the spatial variations of the optical
index inside the droplets, light rays can deviate inside and
refract at their surface. To avoid these complications, we
measured the optical transmission only at the center of
the droplets by focalizing a Gaussian beam of wavelength
λ = 488 μm coming from a solid state laser (Sapphire
SF 488-100 CW CDRH, Coherent). In this case, the rays
propagate in a straight line and the optical calculations are
much simpler. In practice, the laser beam was first filtered
(output power of 0.1 μW), then cleaned by a spatial filter and
focused onto the sample thanks to a condenser lens (focal
length 1 cm). Last, the focus point of the beam (waist w of
1.5 μm) was centered on the droplet chosen with the help of
an XY translation stage, and the intensity signal at the center
of the beam was measured as a function of time.

To sum up, we show in Fig. 2 a schematic of the entire
setup, constituted of three parts:

—the middle part, formed by the two ovens and the sample;
—the upper part designed to visualize the sample. It

includes a SCMOS camera (Zyla 4.2 PLUS, Andor) collecting
the intensity signal though a microscope objective (×10);

—the lower part designed to illuminate the sample either
with a uniform lighting or with the laser beam, thanks to a
beam splitter.

Note that the uniform lighting coming from the TL lamp
was used to observe the droplets and center the laser beam
on the droplet chosen but was always switched off during the
acquisition. Finally, the transmission T at the center of the
droplets was calculated from formula

T = I − I⊥
I‖ − I⊥

, (34)

where I⊥(I‖) is the raw intensity measured by our camera in
the isotropic liquid between perpendicular (parallel) polarizer
and analyzer and I the raw intensity measured at the center of
the droplets between perpendicular polarizer and analyzer.
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FIG. 2. The setup used to measure the transmission of the
droplets. Observations were made with a SCMOS camera through
the objective (O). Thanks to the beam splitter (SR), the sample was
illuminated either globally with the lamp (TL) or locally by focusing
with the condenser (C) the Gaussian beam of the laser (FL) cleaned
by the spatial filter (SF). The orientations of the polarizer (P) and
the analyzer (A) can be set independently. At last, the ovens and the
sample can be moved horizontally with an XY translation stage.

B. Numerical procedure

Using the algorithm described in Sec. II, we computed the
textures of oriented cholesteric droplets by taking the values
of the parameters given in Table I. There remain two free
parameters, namely the anchoring strength Wa and the radius
R of the droplet, whose shape was assumed to be spherical. The
droplet was partitioned with the default spherical mesh of the
library Deal.II, whose characteristics are recalled in Table II.

We also assumed that the electric field was not perturbed by
the variation of the dielectric constant inside the droplet, and
set E = 0.75 V/μm. We verified a posteriori this hypothesis
by solving with Mathematica the Maxwell equations inside
the sample for a completely oriented droplet. In this case, the
effective dielectric constant inside the droplet is ε⊥ and the
dielectric constant outside the droplet is εI ≈ (2ε⊥ + ε‖)/3.
When the droplet radius is between 5 and 15 μm, we found that
the value of the electric field inside the droplet was modified

TABLE II. Characteristics of the spherical mesh. c is the
refinement cycle, Mc is the associated number of vertices, and dc

is the maximal cell diameter renormalized by the droplet radius.

c Mc dc

1 79 1.2248
2 517 0.6124
3 3 817 0.3062
4 29 521 0.1531
5 232 609 0.0765
6 1 847 617 0.0383

by less than 2%. In addition, the direction of the electric field
was only perturbed outside the droplet.

Note that in our numerical code, the free energy was
rescaled by the typical energy F0 = K1 R and that all lengths
were rescaled by the droplet radius R. This allowed us
to always work with a sphere of radius unity. A typical
computation job works as follows. First, a trial value of the
anchoring energy was set. Then, we minimized the free energy
of the smallest droplet with a Nested Iteration algorithm: for
each refinement cycle (except the last), the minimization was
followed by a mesh refinement step, and the output solution
on the coarser mesh was used as input on the finer mesh.
This method optimized the convergence time toward the finest
solution. Note that due to memory limitations, we were not
able to go beyond the sixth cycle. Finally, we used a ramp
algorithm to compute the textures for different radii: for each
radius (except the last one), the minimization was followed
by a small update of the radius, and the output solution of the
previous step was used as input for the new step.

We repeated this computation pattern for different anchor-
ing energies and calculated each time the transmission signal
under crossed polarizers with the method of Jones matrix.
We found that this signal can always be modelized by a
shifted and rescaled cosine when plotted as a function of
the droplet orientation. For this reason, we chose to keep
only the maximum and the minimum of the transmission, to
allow an easy comparison with the experimental data. The final
output of our computation is therefore the minimum and the
maximum of the transmission at the center of the droplet as
a function of the radius and the anchoring length: Tmin(R,la)
and Tmax(R,la).

C. Results and discussion

We now discuss our experimental and numerical results.
First, we tested the influence of the temperature gradient
on the shape of the oriented droplets. We measured the
minimum Tmin and the maximum Tmax of the transmission for
�T = 0.5 ◦C,1 ◦C, and 2 ◦C (equivalent to G = 0.9 mK/μm,
1.8 mK/μm, and 3.6 mK/μm). The values of Tmin and Tmax

are plotted as a function of the droplet radius in Fig. 3. A
first observation is that all the points collapse on the same
master curve, independently of the temperature gradient. This
observation shows that the shape of the droplet is independent
of G. A second observation is that there is a discontinuity
in the slope when the droplet diameter is equal to the sample
thickness h ≈ 41.49 μm measured with our spectrometer. This
slope change can be interpreted as the critical size for which
the droplets become confined and touch the two plates. This
observation shows that the droplets are spherical at this point
since their thickness is equal to their diameter. This result sug-
gests that, in our experiments, the droplets are spherical as long
as their diameter is smaller than the thickness. This result may
be surprising because the droplets are subjected to an electric
field. Indeed, Auernhammer et al. showed that LC droplets
submitted to an AC field can be deformed, due to surface
charges interacting with the electric field. The amplitude of
deformation is expected to be proportional to the square of the
electric field, with a proportionality constant highly dependent
on the frequency of the AC field: the higher the frequency,
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FIG. 3. Minimum (a) and maximum (b) of the transmission signal
as a function of the droplet radius. Crosses are experimental points
and dashed and solid lines are numerical curves.

the weaker the deformation. This is why we chose a 10 kHz
frequency for the electric field. To test the relevance of the
deformation effect, we reproduced similar measurements with
a lower field intensity of 0.5 V/μm. We found again a slope
change at 2R ≈ h and saw no visible variation of the droplet
radius when switching back and forth between the two field
intensities. This result shows that we can neglect the defor-
mation effect when the 10 kHz electric field intensity is lower
than 0.75 V/μm and the droplet radius is smaller than 20 μm
(∼h/2). This study confirms that the droplet shape is spherical,
as it must be at equilibrium without electric field and tem-
perature gradient. This observation is also in agreement with
the findings of Yamamoto et al. [24], who showed by using
fluorescence confocal polarizing microscopy that the droplets
remain spherical, even when they are in a temperature gradient.

Next, we numerically computed the curves Tmin(R,la) and
Tmax(R,la) with R = 5 to 16 μm and la = 0.6 to 1.1 μm. Note

here that we were not able to simulate droplets of radius larger
than 16 μm with a good enough accuracy because, in this
case, the surface disclination lines are too thin to be resolved.
Indeed, we noticed that the thickness of the disclination lines
is typically 1.6 μm. For a droplet of 16 μm, this means that
the dimensionless thickness of the line on the unit sphere is
equal to 0.1. This value must be compared with the typical cell
diameter of 0.04 on the sixth level of refinement, which is not
small enough to get reliable results. For the smaller droplets,
the relative error ε on Tmin and Tmax, defined as

ε = max

(∣∣∣∣T
(6)

min − T (5)
min

T
(6)

min

∣∣∣∣,
∣∣∣∣T

(6)
max − T (5)

max

T
(6)

max

∣∣∣∣
)

,

was always less than 5%. In this equation, T (k) is the
transmittance computed on the kth refinement cycle. This
formula can be interpreted as an upper bound for the true
error if the convergence is at least linear, which is always the
case in our simulations.

As the value of K4 in Table I was obtained from a theo-
retical model and not from an experimental measurement, we
wondered whether a different value of K4 could significantly
change Tmin and Tmax. For this reason, we recomputed the
transmission curves for values of K4 ranging from 0.48 to
1.68 pN [the upper bound allowed by the Ericksen inequalities
given in Eq. (5)], and found that the relative variation of the
transmission was always less than 5%. This result shows that
we can neglect here the role of the elastic constant K4.

Finally, we fitted our experimental data with the numerical
curves Tmin(R,la) and Tmax(R,la). Cubic spline interpolation
was used to extend the discrete numerical data, and the
least-square solution was computed with the Levenberg-
Marquardt algorithm. We plotted in Fig. 3 the least-square
curves Tmin(R,l∗a ) and Tmax(R,l∗a ) (solid lines) by taking the
fitted value of the anchoring extrapolation length with 95%
confidence bounds: l∗a = 0.82 ± 0.07 μm. For comparison, we
also plotted the theoretical signal Tmin calculated with a droplet
in which the equilibrium helix is not deformed. As we can see,
this curve shifts much more from the experimental data than
the numerical curves Tmin(R,l∗a ) and Tmax(R,l∗a ). This validates
the relevance of our numerical approach. Note that the usual
method of measurement of la proposed by Faetti [25] and
Yokoyama [26] cannot be applied with the CCN-37, contrary
to the method presented here. Indeed, this LC has negative
dielectric and magnetic anisotropies, which makes impossible
the destabilization of the director orientation out of the plane of
the N-I interface by application of a vertical or horizontal field.
This is obvious when the field is vertical, whereas a horizontal
field will only twist the director field because K2 < K1,3,
without changing its orientation with respect to the normal
to the interface.

To go further in the comparison between our numerical
model and the experiments, we used the Jones matrix method
to compute the image between crossed polarizer and analyzer
of a typical droplet for two different orientations of the polar
axis with respect to the polarizer. The result is shown in Fig. 4
for a droplet of radius 9 μm. In this figure, the left images
are experimental and the right ones have been numerically
calculated. The experimental images were taken in green light
(546 nm) by replacing the condenser lens C with a Köhler
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FIG. 4. (a) Three cuts of the director field for R = 9 μm along
the xy,xz and yz planes. The orientation of the droplet with respect to
the three axes is given in the bottom right corner. Tilted molecules are
represented by nails, proportional in length to the director projection
in the plane of the drawing. The nail point is oriented towards the
reader. (b) Numerical and experimental images of the same droplet
than in (a). In all these images, the polar axis (as defined in Fig. 1) is
vertical and aligned with the y-axis.

illumination setup. The aperture diaphragm was closed as
much as possible to work in parallel light. The numerical
images were calculated by neglecting the ray deviations.
As we can see, the agreement between the numerics and
the experiment is rather good, but not perfect, in particular
when the droplet polar axis is parallel to the polarizer. This
could be due to the deviations of the light rays inside the
droplet, especially near the surface disclination lines, which
are neglected in the optical calculations. Taking into account
these effects is difficult and out of the scope of this paper.

IV. STABILITY ANALYSIS OF BANDED AND DOUBLE
TWIST DROPLETS

In most of the LCs, the anchoring is tilted at the cholesteric-
isotropic interface. With these materials, two types of droplets
are usually observed in the coexistence region with the
isotropic liquid [6,7]. The first ones have a revolution axis
and present a double twist structure inside as shown recently

(a)

(b)(b)

N

S

N

S

FIG. 5. (a) Equatorial cut of the director field in the DT case (left)
and ST case (right). (b) Topology of the surface virtual defects (black
dots) and disclination lines (black lines) in a DT droplet (left) and ST
droplet (right).

by Yoshioka et al. [6]. The second ones are mainly twisted
in a single direction and present a banded texture under the
microscope. Contrary to the previous ones, these droplets are
only invariant under a π -rotation along an axis perpendicular
to the main twist axis. The director field inside these two types
of droplets is shown in Fig. 5(a). These droplets have also a
virtual disclination lines on their surface shown in Fig. 5(b).
For the double twist (DT) droplets (left drawing), this line is
along the equator and perpendicular to the NS revolution axis
(C∞ axis). For the single twist (ST) droplets (right drawing),
this line deforms around the equator and the NS axis becomes
a C2 axis. Experimentally, the passage from DT to ST droplets
depends on the size of the droplets [6,7]: the small droplets
are of DT type whereas the big ones are of the ST type. This
structural transition during which the symmetry of revolution
is broken was recently studied by Yoshioka et al. [6] both
experimentally and theoretically. In this work, the dominant
role of the saddle-splay constant was recognized and a method
of measurement of K4 was proposed, based on an analysis of
the optical properties of the DT droplets. On the other hand, this
model used a very simple ansatz for the director field inside the
DT droplets and completely neglected the role of the anchoring
energy. Our goal in this section is to test to which extend
these assumptions are justified by comparing the results of this
simplified model with numerical simulations. The comparison
will be made for the material 7CB (heptylcyanobiphenyl)
for which the elastic constants, the anchoring angle, and the
anchoring energy are well known [25,27].

A. Numerical procedure

The numerical procedure to compute the textures of the
cholesteric droplets is very similar to that described in the
previous section. The calculations were performed for the LC
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TABLE III. Values at the transition temperature of the main
physical constants of the mixture 7CB+R811 [25,27].

Constants Values at TChI

K1 (pN) 2.2
K2 (pN) 1.2
K3 (pN) 2.0
la = K1/Wa (μm) 2.65
θa (deg) 52.6

7CB (heptylcyanobiphenyl) for which the elastic constants
Ki(i = 1 − 3) and the surface properties are known (Table III).
Note that we did not measure the anchoring length by using
the method presented in the previous section, because the 7CB
is of positive dielectric anisotropy, and therefore cannot be
oriented as in the case of the CCN-37.

In our calculations, we assumed that these constants do
not change when a small amount of chiral molecules (such as
R811, for instance) is added and we took as adjustable param-
eters the equilibrium twist q (proportional to the concentration
of chiral dopant), the radius R of the droplets and the Gauss
elastic constant K4. The same spherical mesh as before was
used to partition the droplet.

At the start of each computation job, we chose the values of
two dimensionless numbers qla and K4/K1. In this way, the
cholesteric phase was completely characterized. To calculate
the texture of the droplets as a function of their radius, we
used as in the previous section a refinement phase followed by
a ramp phase, starting this time from the biggest droplet. For
each radius R, we also computed the dimensionless energy
F̃ (qR,qla,K4/K1) of the droplet and the quantity:

ψ

(
qR,qla,

K4

K1

)
= 1

V

∫
V

dV

[
D�n
D�

]2

, (35)

where D�n/D� = �ez × �n − ∂ �n/∂θ is the variation rate asso-
ciated with a solid rotation around the polar axis �ez defined in
Fig. 5 [28]. This quantity can be used as an order parameter
to characterize the symmetry breaking during the transition
between ST and DT droplets. Indeed, ψ = 0 in the DT
droplets since D�n/D� = 0, the polar axis �ez being a C∞
axis. Conversely, ψ �= 0 in a ST droplet because the polar axis
is no longer a C∞ axis. Finally, the critical radius Rc between
the two regimes was deduced from the plot of the function
ψ(qR).

Note that we only kept the results for which the relative error
on ψ , defined as in the last section, was less than 10%. The
discarded results essentially concerned the droplets calculated
in the very strong anchoring regime when qla � 0.4: in
this regime, the surface disclination was too thin to be well
approximated, even on the finest mesh of the sixth refinement
cycle.

B. Results and discussion

We now discuss our numerical results. First, we determined
the order of the transition between ST and DT droplets for a
particular value of the Gauss constant K4/K1 = 0.78 (this
value was calculated from the theoretical relation of Nehring
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FIG. 6. Value of the order parameter ψ as a function of the dimen-
sionless radius qR for three values of the dimensionless anchoring
length qla . Inset: First-order derivative of the dimensionless energy
as a function of the dimensionless radius. The break in the slope
is the hallmark of a second-order transition. All these curves were
computed by taking K4/K1 = 0.78.

and Saupe: K4 = (K1 + K2)/2 [20]). We plotted in Fig. 6 the
value of ψ as a function of qR for different values of the
dimensionless anchoring length qla . Three observations can
be made:

(1) the order parameter is equal to zero for the small droplets
and different from zero for the big droplets, which shows that
DT droplets are stable only for the small radii;

(2) the critical radius Rc for which the transition occurs
depends on the dimensionless anchoring length qla;

(3) the order parameter ψ is continuous at the transition,
with a slope discontinuity at this point.

This last observation suggests that the transition is of the
second order. To confirm this point, we plotted in the inset
of Fig. 6 the derivative of the rescaled energy ∂F̃ /∂qR as a
function of qR. As we can see, there is a break in the slope of
the curve at the transition. This shows that the second derivative
∂2F̃ /∂(qR)2 is discontinuous at the transition, which is the
mark of a second-order transition. In addition, we found that
the order of the transition remained the same for all the tested
values of qla and K4/K1. In the following, the critical radius
Rc was always determined from the break in the slope of the
curve ψ(qR).

Next, we explored the dependence of the critical radius Rc

on qla and K4/K1. The effect of the rescaled Gauss constant
K4/K1, calculated both from our numerical code and the
Yoshioka et al. model [6], is shown in Fig. 7(a). In all the
cases, the transition completely disappears when K4/K1 = 0
(the lower bound allowed by the Ericksen inequalities given
in Eq. (5)). In this limit, the DT droplets are no longer stable,
even at very small radius.

We also plotted in Fig. 7(b) the dimensionless critical
radius qRc as a function of the dimensionless anchoring
length qla . This graph shows that the anchoring energy plays
a non-negligible role—contrary to what is assumed in the
Yoshioka et al. model—as long as qla < 10, which is the case
in most experiments. Moreover, this effect is not trivial when
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FIG. 7. (a) Dimensionless critical radius qRc as a function of the
ratio K4/K1 for two values of the dimensionless anchoring length
qla (dashed and dotted lines). The solid line was calculated from the
Yoshioka et al. model. (b) Same quantity as a function of qla for three
values of the ratio K4/K1.

qla decreases since the critical radius Rc starts to decrease
in the intermediate anchoring regime (1 � qla � 10) before
increasing in the strong anchoring regime (qla � 1).

Finally, we compared the numerical director field of a DT
droplet with the very simple ansatz used in the theoretical
model of Yoshioka et al. To do this comparison, let us introduce
the Euler angles α and β in the local polar frame (�eθ ,�ez,�er ) (cf.
Fig. 8). Because �ez is along the revolution axis of the droplet,
α and β do not depend on the polar angle θ and the director
field reads

�n(r,z) = cos β(r,z)�er − sin β(r,z) sin α(r,z)�eθ

+ sin β(r,z) cos α(r,z)�ez.

To simplify their calculations, Yoshioka et al. assumed a
very simple form for these angles:

α(r,z) = qer,
(36)

β(r,z) = π/2,

�ex �ey

�ez

�x

r

z

θ

�eθ

�ez

�er

�n

α

β

FIG. 8. Coordinate and angle conventions for the director field
inside a DT droplet. The position is parametrized by the polar
coordinates (r,θ,z) by taking the z axis along the revolution axis
of the droplet. The director field is parametrized by the Euler angles
(α,β) defined in the local frame (�eθ ,�ez�er ).

where qe is an effective twist which depends on qR and the
elastic constants Ki and must be calculated by minimizing the
total energy of the droplet.

To test the validity of this ansatz, we computed the director
field of a DT droplet by taking qla = 100 (which corresponds
to the weak anchoring regime, as in the model of Yoshioka
et al.), qR = 2.7 (�qRc) and K4/K1 = 0.78 (theoretical value
of Nehring and Saupe [20]). The associated Euler angles α and
β are plotted on Fig. 9 as a function of r/R for different z.
A first observation is that the tilt angle β of the director with
respect to �er deviates from π/2 as soon as z �= 0, in contrast
with Yoshioka et al. model. A second observation is that the
twist angle α is not linear in r (again in disagreement with
Yoshioka et al. model), although it seems roughly independent
of z. More awkward, the theoretical director field obtained
from Yoshioka et al. model gives a profile αth(r,z) = qer

(black line in Fig. 9) very different from the numerical one. In
particular, the slope qe of this theoretical profile is 30% smaller
than the mean slope of our numerical profile α(r).

This disagreement between the ansatz Eq. (36) and the
real director field is problematic, because it clearly shows
that the Yoshioka et al. measurement method of K4 is biased.
Indeed, this method relies on fitting the experimental average
twist qe (measured from the optical transmission under crossed
polarisers) as a function of qR. As the value of qe obtained
from Yoshioka et al. model is biased (too small according to
our simulations, even in the weak anchoring regime), one could
expect that the measured value of K4 is also biased, especially
since this simplified model neglects the anchoring energy.

V. CONCLUSION

In this paper, we presented an algorithm to solve efficiently
the equations of the nematoelasticity. This algorithm is based
on the renormalized nullspace Newton method of Gartland
et al., with three important modifications: an arbitrary unstruc-
tured grid is allowed to discretize the LC domain, a trust-region
strategy is used instead of a Newton method, and an algebraic
multigrid preconditioner is used to help the convergence.
The trust-region strategy allows a very robust convergence
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FIG. 9. Euler angles α (a) and β (b) as a function of r/R for
different values of z. The director field was computed by taking
qla = 100,qR = 2.7 and K4/K1 = 0.78.

by automatically interpolating the solution update between
the Cauchy direction and the Newton direction. Furthermore,
the convergence becomes quadratic near a minimum of the
free energy, i.e., the convergence is faster than with a more
conventional gradient descent algorithm.

We applied this algorithm to two problems.
The first problem was the measurement of the anchoring

length at the ChI interface of a chiral mixture with planar
anchoring and negative dielectric anisotropy. By applying a
high electric field to the droplets, we obtained a structure whose

optical transmission is very sensible to the anchoring length
la . By measuring and fitting this transmission as a function of
the droplet radius, we were able to deduce the value of the
anchoring extrapolation length la for the studied cholesteric
mixture (CCN-37 doped with R811). The value found (0.87 ±
0.07 μm) is 3 to 30 times smaller than the values given by
Faetti in cyanobiphenyls [25], which shows that the anchoring
is rather strong in CCN-37.

The second problem was the transition between DT and
ST droplets in a cholesteric mixture with tilted anchoring.
We showed that this transition is of the second order, and
disappears when the Gauss constant vanishes (K4 = 0). We
compared our results with the analytical model of Yoshioka
et al., and found a qualitative (but not quantitative) agreement.
In particular, we found that the effect of the anchoring energy
cannot be neglected in the moderate and strong anchoring
regimes. We also found that, even in the regime of very weak
anchoring, the ansatz of Yoshioka et al. concerning the director
field is rather far from the real solution numerically calculated.

Nevertheless, we believe that Yoshioka et al. measurement
method of K4 is promising and could easily be corrected
by using the more realistic director fields calculated with
our code. More precisely, measuring the optical transmission
at the center of DT droplets oriented with their polar axis
perpendicular to the observation direction as a function of qR

and fitting this curve with our numerical code should give a
more exact value of K4. Such an experiment is planned in the
future with a material in which the elastic constants and the
surface properties are well known.

Another extension of this work would be to include in
our numerical code the Lehmann torque responsible for the
rotation of the banded (ST) droplets when they are subjected
to a temperature gradient. In this case the experiment shows
that there is still a transition between the DT droplets—which
do not rotate—and the banded ST droplets—which rotate—
above a critical radius Rc that is inversely proportional to

√
G

at large G [7]. This problem could be treated numerically
by determining for which radius Rc the static DT solution
disappears when G increases. In this case, our code cannot
be used directly because the Lehmann torque does not derive
from a free energy. On the other hand, the structure could be
calculated step by step as a function of G by using an usual
relaxation method and by taking as initial solution the one
calculated numerically with the current code at G = 0.
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