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On the existence of the thermomechanical terms of Akopyan and Zel’dovich in
cholesteric liquid crystals
G. Poy and P. Oswald

Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France

ABSTRACT
We revisit a theoretical paper of Akopyan and Zel’dovich about the thermomechanical coupling
terms in nematic liquid crystals. We show that the expressions of these terms given by these
authors must be corrected to satisfy the Onsager reciprocity relations, a point already stressed by
Pleiner and Brand in 1987. We then extend this calculation to the cholesteric phase and show that
there are no additional terms in the uniaxial approximation of this phase. Finally, we give the
correspondence between the Akopyan and Zel’dovich terms and those calculated by Pleiner and
Brand in 1996 by making a different choice for the forces and the fluxes in the theory.
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1. Introduction

In a nematic or a cholesteric phase – which is a chiral
version of the previous one – several original out-of-equi-
librium cross-coupling effects exist, which are forbidden in
ordinary liquids. These effects are associated with the
existence of a new hydrodynamic variable, the director n
which is the unit vector giving the mean orientation of the
molecules at each point. The novelty with respect to an
ordinary liquid is that the director can experience a torque,
whence the name of ‘torque liquid’ sometimes given to this
phase [1]. Let now suppose that a nematic (or a cholesteric)
is subjected to a temperature gradient G.1 In this case, it
can be shown that themolecules of the phase are submitted
to a torque and a stress proportional to the temperature
gradient, of general form ΓðtmÞ

i ;�ij Gj for the torque and

� �ijkΓ
ðtmÞ
k =2þ ζ ijk Gk for the stress. Note that we have

separated in the expression of the stress tensor the anti-

symmetric part associated to the torque � �ijkΓ
ðtmÞ
i =2 [2]

from the symmetric part σðthÞij ;ζ ijk Gk (with ζ ijk ¼ ζ jik). In

the following, we will call thermomechanical terms the first

coupling terms in �ij and thermohydrodynamic terms the
second terms in ζ ijk. The former ones enter into both the
torque andmomentum equations whereas the second ones
only enter into the momentum equation. Note that in the
previous papers, the distinction between these two types of
terms was not done, all of them being indifferently called
thermomechanical terms.

The first cross-coupling of this type was described
by Leslie in 1968 in a cholesteric phase. Leslie calcu-
lated the coupling tensors �ij and ζ ijk based on the
symmetries of a cholesteric in the uniaxial
approximation,2 and found that �ij (resp. ζ ijk) could
be expressed as a function of a unique pseudoscalar ν
(resp. μ). The thermomechanical effect associated with
ν was experimentally observed first indirectly by Éber
and Jánossy [3,4] (see also [5,6]) and then directly by
Oswald and Dequidt [7]. This effect was also numeri-
cally studied by Sarman and Laaksonen [8,9] with
molecular dynamic simulations. To our knowledge,
the thermohydrodynamic effect associated with μ was
never observed experimentally.
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Note that in a perfect (undeformed) nematic phase,
the mirror symmetry imposes that μ ¼ ν ¼ 0 meaning
that the pure Leslie thermomechanical and thermohy-
drodynamic effects cannot exist in this phase.
However, the situation becomes different if the director
field is distorted. This was shown by Akopyan and
Zel’dovich in 1984 [10] who stressed that one can
observe thermomechanical and thermohydrodynamic
effects in a deformed nematic, where the gradient of
the director �n is non-zero. In this case, the coupling
tensors �ij and ζ ijk must be proportional to �n (to the
smallest order). This is essential because no cross-cou-
pling with G is authorised in a undeformed nematic for
obvious symmetry reasons.

By taking into account this linear dependence in �n,
Akopyan and Zel’dovich calculated the structure of the
coupling tensors compatible with the symmetries of a
nematic, and found that �ij can be expressed in terms of
four independent scalars �1�4, while ζ ijk depends on eight
independent scalars �5�12. Several studies then focused on
the consequences of these coupling terms. In particular,
thermally induced flows in hybrid-oriented nematic cells
were studied experimentally by Akopyan et al. [11–14]
and numerically by Zakharov et al. [15]. Oswald et al. [16]
showed experimentally that the coupling coefficients �1�4

play an essential role in the thermomechanical rotation of
translationally invariant configurations of the cholesteric
phase (where these terms should also exist). Zakharov
et al. investigated the influence of the coupling terms of
Akopyan and Zel’dovich on the pumping effect in a
microvolume cylindrical cavity [17] and on vortical
flows in bidirectionally oriented nematic cell [18].
Finally, it was shown experimentally by Jánossy et al.
[19] and theoretically by Krimer and Residori [20] that
these coupling terms can induce a significant lowering of
the optical Freedericksz transition threshold in nematics.

On the other hand, Brand and Pleiner [21] challenged
the existence of the thermomechanical and thermohydro-
dynamic terms of Akopyan and Zel’dovich because of a
fundamental flaw in their paper [10]: indeed, a simple
examination of the time-reversal transformation proper-
ties of the involved quantities shows that the coupling
terms of Akopyan and Zel’dovich are reversible; however,
it can be checked that these terms do not yield a vanishing
entropy production. This means that the Onsager reci-
procity relations are violated, which is indeed a serious
problem. This can explain the conclusion of Pleiner and
Brand in 1987 that the terms of Akopyan and Zel’dovich
do not exist [21].

The irony of history is that Pleiner and Brand
derived themselves very similar terms in their formula-
tion of the nematohydrodynamics by using a different

choice for the forces and the fluxes [21,22]. The ques-
tion may thus be legitimately raised as to the equiva-
lence between the theory of Akopyan and Zel’dovich
(once corrected) and that of Pleiner and Brand. In
addition, it would be very interesting to extend these
calculations to a cholesteric phase, knowing that several
experiments were done with cholesterics.

The goal of this paper is to propose a unified frame-
work that allows one to easily derive the phenomenolo-
gical equations whatever the choice of forces and fluxes.
This formalism will then be used to correct the terms
given by Akopyan and Zel’dovich and show the equiva-
lence between the two approaches proposed in the litera-
ture and generalise the calculations to a cholesteric phase.

The plan of the article is the following. In Section 2,
we will present the generic framework used to derive the
phenomenological constitutive equations of the phase.
In Section 3, we will use this formalism to derive a
simplified version of the phenomenological equations
in the case of a cholesteric phase. In this section, only the
Leslie terms will be considered. This exercise will prove
to be instructive to show – as expected – that the final
result does not depend on the choice of the forces and
fluxes. In Section 4, we will generalise the results of
Section 3 by including all the possible thermomechani-
cal and thermohydrodynamic effects in a distorted cho-
lesteric phase. The correspondence between the
Akopyan and Zel’dovich terms and those of Pleiner
and Brand will be given in this section. Finally, our
conclusions will be drawn in Section 5.

2. Generic framework

In this section, we establish the generic framework
used to derive the out-of-equilibrium equations of the
nematohydrodynamics. Our framework is largely
inspired by the formalism of de Groot and Mazur
[23] or Pleiner and Brand [22], with a notable improve-
ment: in our approach, both reversible and irreversible
fluxes can be obtained by deriving two bilinear forms
of the forces, which are built in order that the fluxes
automatically verify the Onsager reciprocity relations
(symmetric and antisymmetric).

We start from the irreversible production of
entropy, as given by Oswald and Pieranski in the
incompressible approximation [2]:

T σ
�
;T

Dσ
Dt

þ � � jðσÞ
� �

¼ σðsÞ : D� ΓðneqÞ � w� jðσÞ � G; (1)

where σ is the density of entropy, D=Dt;@=@t þ ν � �
the advective derivative, jðσÞ the entropy flux, σðsÞ the
symmetric part of the out-of-equilibrium contribution
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σ
ðneqÞ

to the total stress tensor, D the symmetric part of
the velocity gradient tensor �v, ΓðneqÞ the out-of-equi-
librium contribution to the total torque exerted on the
director n, w;n� N the rotation vector of the director
with N ¼ Dn=Dt � 1

2 ð�� vÞ � n the corotational time
derivative of the director, and G the temperature gra-
dient. In this equation, A : B ; AijBij represents the
total contraction of the two second-order tensors A
and B. Note that this expression is the same as the
one given by de Gennes and Prost [24] or Pleiner and
Brand [22] in the limit � � v ¼ 0 (incompressibility
condition). We also recall that the antisymmetric part

of sðneqÞ can be obtained from ΓðneqÞ with the identity

σðaÞij ¼ ��ijkΓ
ðneqÞ
k =2 where �ijk is the Levi-Civita sym-

bol [2].
The dynamical equations associated with these vari-

ables are the torque equation, which is a consequence
of the angular momentum theorem [2]

ΓðeqÞ þ ΓðneqÞ ¼ 0;

the momentum conservation (or Cauchy’s) equation,
coming from Newton’s second law [2]

ρ
Dv
Dt

¼ � � σðeqÞ þ σðneqÞ � P I
� �

;

and the heat transport equation [1,2]

ρcp
DT
Dt

þ � � jðqÞ ¼ σðsÞ : D� ΓðneqÞ � w

in which the term of thermal expansion has been
neglected. In these equations, ΓðeqÞ ¼ n� h is the equili-
brium contribution to the total torque with h ¼ �δf =δn
the molecular field associated with the total free energy f
including elastic, electric and magnetic contributions,

σðeqÞij ¼ �nk;i ð@f =@nk;jÞ the elastic stress tensor, ρ the

density, P the pressure (which can be computed from the
incompressibility condition � � v ¼ 0), cp the specific heat

capacity at fixed pressure and jðqÞ;T jðσÞ the heat flux.
The right-hand-side of Equation (1) can be inter-

preted as a sum of products between fluxes and forces.
Here, we assume, as de Gennes and Prost [24] did, that
the choice of fluxes and forces can be made arbitrarily.
We will show in the next section that the phenomen-
ological equations do not depend on this choice. For
now, let us just remark that, at equilibrium, all forces
and fluxes are equal to zero, whereas, out of equili-
brium, they no longer vanish – and must verify σ

� � 0
according to the second law of thermodynamics. When
the forces are not too large – i.e. when the system is not
too far from equilibrium – a linear relation can be

written between the fluxes and the forces, which must
verify certain symmetry properties.

More precisely, we rewrite the irreversible produc-
tion of entropy as de Groot and Mazur by explicitly
separating the contributions {symmetric force, anti-
symmetric flux} (exponent α) and {antisymmetric
force, symmetric flux} (exponent β) under the trans-
formation t ! �t:

T σ
� ¼ jα � f α þ jβ � f β:

In this equation, f α (f β) is a vector containing all the
coordinates of the Nα (Nβ) symmetric forces (antisym-

metric forces) under the transformation t ! �t; jα (jβ)
is a vector containing all the coordinates of the Nα (Nβ)
antisymmetric fluxes (symmetric fluxes) under the
transformation t ! �t, conjugate to the forces

included in f α (f β). The values of Nα and Nβ depend
on the choice of forces and fluxes, but of course the
total number of forces Nα þ Nβ must be the same as in
Equation (1), i.e. 3.

The phenomenological equations can then be writ-
ten as a linear relation between fluxes and forces:

jα ¼ Lααf α þ Lαβf β

jβ ¼ Lβα f α þ Lββf β
(2)

In these equations, Lpq (p; q ¼ α or β) are matrices
containing all the phenomenological coefficients.
They are constrained by the symmetric and antisym-
metric Onsager reciprocity relations coming from the
reversibility of the microscopic equations [23]:

Lαα ¼ Lαα½ �;
Lββ ¼ Lββ

� �
;

Lαβ ¼ � Lβα
� �

:
(3)

Furthermore, the Curie principle imposes that the form
of the phenomenological Equations (2) must be invar-
iant under the action of the symmetry group of the
phase (D1h for a nematic, D1 for a cholesteric in the
uniaxial approximation).

Note that the Onsager relations imply that only the
coupling of type αα or ββ, called dissipative couplings
in opposition to the so-called reversible couplings of
type αβ $ βα, can produce an irreversible production
of entropy:

T σ
� ¼ Lαα : f α � f αð Þ þ Lββ : f β � f β

� 	
; (4)

where ½a� b�ij ¼ ai bj is the dyadic product of the two
vectors a and b. This form is expected, because the
irreversible production of entropy must be invariant
under the transformation t ! �t. We also recall that
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the second law of thermodynamics T σ
� � 0 imposes

that the matrices Lαα and Lββ must be positive
semidefinite.

In order to ease the derivation of the form of the
phenomenological equations verifying the Onsager
relations and the Curie principle, we use a computa-
tional trick inspired from the original paper of
Akopyan and Zel’dovich [10]. This trick consists of
rewriting the general system of phenomenological
Equations (2) under the following form:

jα ¼ @
@f α Rd þ Rrð Þ;

jβ ¼ @
@f β

Rd � Rrð Þ; (5)

where we defined the ‘potentials’ Rd and Rr as

Rd ¼ 1
2 Lαα : f α � f α½ � þ Lββ : f β � f β

� �� 	
;

Rr ¼ Lαβ : f α � f β
� 	 ¼ �Lβα : f β � f α

� �
:

A direct comparison with Equation (4) shows that

Rd ¼ T σ
�
=2, which can therefore be interpreted as a

dissipation function associated with the couplings of
types αα and ββ (the so-called Rayleigh dissipation func-
tion in the literature). The new function Rr has no parti-
cular physical meaning but is a convenient quantity to
easily derive the reversible couplings of types αβ and βα.

The constitutive relations can then be obtained by
writing Rd as the sum of the most generic bilinear

forms in f α; f αf g and f β; f β

 �

respectively, and Rr as

the most generic bilinear form in f α; f β

 �

. Then, using

Equation (5) gives the fluxes jα and jβ. Note that in
their original method, Akopyan and Zel’dovich
includes in the function Rd the reversible couplings of
type αβ $ βα and do not define the function Rr; this
makes no sense – as rightfully pointed by Brand and
Pleiner [21] – because these couplings are not dissipa-
tive and do not produce entropy. Our generalisation
with the function Rr allows one to correct this error
because the system of Equations (5) automatically veri-
fies the Onsager relations. Note that this is also the case
with the method of the Poisson brackets used by other
authors such as Stark and Lubensly [25].

However, Rr and Rd must still respect the symme-
tries of the phase. To impose these symmetries, we use
the following procedure:

(1) First, we write down all the terms invariant
under proper rotations around n.

(2) Then, we eliminate all terms which are not
invariant under the transformation n ! �n. If
the phase is cholesteric, we stop here.

(3) If the phase is nematic, we eliminate all the
terms which are not invariant under the reflex-
ion in the mirror orthogonal to n.

The first step is the only non-trivial one, and necessi-
tate some results of group theory. In Appendix A, we
explain our method to derive the generic expression of
multilinear forms invariant under proper rotations
around n. We will use the results of this appendix in
the next sections to derive the phenomenological equa-
tions in a cholesteric phase.

To finish this section, note that our procedure can
be easily generalised to include coupling terms of
higher order, such as the coupling terms of Akopyan
and Zel’dovich. For example, if we want to include
quadratic corrective terms in the fluxes, one only
needs to include in the function Rr or Rd all the
possible trilinear contributions.

3. Leslie’s thermomechanical effect:
equivalence of the conventions

In this section, we write down a simplified set of phenom-
enological equations by neglecting the hydrodynamic
terms (v = 0) and all the higher-order terms of Akopyan
and Zel’dovich type. The complete set of phenomenolo-
gical equations will be introduced in Section 4.

We show the equivalence between the two different
choices of fluxes and forces made by de Gennes and
Prost on the one hand [24] and by Pleiner and Brand
on the other hand [26]. More important, we solve the
apparent contradiction between the two conventions
by showing why the Leslie effect appears dissipative
in one convention and reversible in the other one.
Finally, we present a thought experiment that explains
the difference between the phenomenological coeffi-
cients in convention.

3.1 Convention of de Gennes and Prost

As de Gennes and Prost did in their book [24], we
choose as forces and fluxes3:

f α ¼ G;
f β ¼ w;

jα ¼ �jðσÞ;
jβ ¼ �ΓðneqÞ:

First, we derive the expression of Rd as the sum of two

bilinear functions of f α; f αf g and f β; f β

 �

respectively.
According to Appendix A.2.1, the terms invariant
under proper rotations around n of such a function are

G? � G?� 	
; GkGk

� �
; w � wð Þ; (6)
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where we have used the following decomposition:

w ! w?;w;
G ! Gk;G � n; G?;G� Gkn;

Note that we omitted wk ¼ w � n which is equal to 0
because w is orthogonal to n. In Equation (6), all the
terms are invariant under the transformation n ! �n
and the reflection in the mirror orthogonal to n, and
therefore are acceptable both in a nematic and a cho-
lesteric. We deduce that the most generic expression of
Rd compatible with the symmetries of a cholesteric or a
nematic can be written as

Rd ¼ γ1
2

wj j2 þ κ?
2T

G?�� ��2 þ κk
2T

Gk
� �2

(7)

Second, we derive the expression of Rr as a bilinear

function of f α; f β

 �

. According to Appendix A.2.1, the
only terms invariant under proper rotations around n
in this bilinear function are

G? � w� 	
; G? � w

� 	 � n;
In this equation, only G? � w is invariant under the
transformation n ! �n, but this contribution is not
invariant under the reflection in a mirror orthogonal to
n; therefore, it is allowed only in a cholesteric and not
in a nematic. We deduce that the most generic expres-
sion of Rr compatible with the symmetries of a choles-
teric can be written as

Rr ¼ ν G? � w� 	
; (8)

with v = 0 in a nematic.
From Equations (5), (7) and (8), we deduce the

phenomenological equations:

�ΓðneqÞ ¼ γ1w þ νG?;
�jðσÞ ¼ �νw þ κk

T Gknþ κ?
T G?;

(9)

As expected, we recover the usual equations for the non-
equilibrium torque and the heat flux, with γ1 the rotational
viscosity, κk (κ?) the thermal conductivity parallel (per-
pendicular) to the director, and ν the Leslie thermomecha-
nical coefficient. Note that ν is necessarily a pseudoscalar

since ΓðneqÞ is a pseudovector and G? is a true vector: as a
consequence vmust change sign in two cholesterics enan-
tiomer of each other. Furthermore, the Leslie thermome-
chanical effect appears to be non-dissipative with this
choice of forces and fluxes since it is generated by the
reversible potential Rr. This point was already stressed by
Oswald and Pieranski in their book [2].

3.2 Convention of Pleiner and Brand

Similarly to Pleiner and Brand [22,26], we can also
choose as forces and fluxes:

f α ¼ �ΓðneqÞ

G


 �
; jα ¼ w

�jðσÞ


 �
:

With this convention, there are only variables of
type α. For this reason, we only need to derive the
expression of Rd as a bilinear function of f α; f αf g. As
shown in Appendix A.2.1, the terms invariant under
proper rotations around n of such a function are

G? � G?� 	
; GkGk

� �
; ΓðneqÞ � ΓðneqÞ

� �
;

G? � ΓðneqÞ
� �

; G? � ΓðneqÞ
� �

� n;
(10)

where we have used the same type of decomposition as
in the previous subsection:

ΓðneqÞ ! Γ? ; ΓðneqÞ;
G ! Gk ; G � n; G? ; G� Gkn;

As ΓðneqÞ is orthogonal to n, we have omitted Γk in this
decomposition. In Equation (10), only the following
terms are invariant under the transformation n ! �n:

G? � G?� 	
; GkGk

� �
; ΓðneqÞ � ΓðneqÞ

� �
;

G? � ΓðneqÞ
� �

;

In addition, all these terms are invariant under the
reflection in the mirror orthogonal to n, except for G? �
ΓðneqÞ which is a pseudoscalar. We deduce that the most
generic expression for Rd compatible with the symme-
tries of a cholesteric can be written as

Rd ¼ 1
2

1
γ01

jΓðneqÞj2 þ κ0?
T

jG?j2 þ
κ0k
T

Gk
� �2

þ ν0

γ01
G? � ΓðneqÞ

� �" �
:

(11)

In a nematic, this expression remains unchanged
with ν0 ¼ 0.

From Equations (5) and (11), we deduce the phe-
nomenological equations:

w ¼ � 1
γ01

ΓðneqÞ � ν0
γ01

G?;

�jðσÞ ¼ ν0
γ01

ΓðneqÞ þ κ0k
T Gknþ κ0?

T G?:
(12)

The phenomenological coefficients γ01, κ
0
k;? and ν0 have

the same physical meaning than in the de Gennes
convention. In particular, the coefficient ν0 is still a
pseudoscalar. But contrary to the previous convention,
the Leslie thermomechanical effect associated with ν0

appears to be dissipative for this choice of forces and
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fluxes. We solve this apparent contradiction in the next
subsection by showing the equivalence between the two
conventions and by proposing a thought experiment
which gives the physical meaning to each coefficient in
each convention.

3.3 Equivalence of the conventions

It is easy to check that the systems of phenomenologi-
cal Equations (9) and (12) are perfectly equivalent on
condition to impose the following relations between
the phenomenological coefficients:

γ1 ¼ γ01;
ν ¼ ν0;
κk ¼ κ0k;

κ? ¼ κ0? � Tν02
γ01

:

In particular, we notice that the thermomechanical cou-
pling coefficient ν0 introduces a correction to the thermal
conductivity orthogonal to the director κ0?. As the con-
ductivity is a dissipative phenomenon, this correction
explains why the thermomechanical coupling of Leslie
is dissipative in the convention of Pleiner and Brand and
reversible in the convention of de Gennes and Prost.

To better understand the difference between the two
conventions, let us give the physical interpretation of
the two thermal conductivities κ? and κ0? with the help
of a thought experiment. This experiment, represented
schematically in Figure 1, aims to measure the thermal
conductivity in a compensated cholesteric sample, in
which the spontaneous twist is equal to zero. This
sample is sandwiched between two plates separated by
a distance d. The upper plate is thermally regulated at a
temperature T0. The lower plate is covered with a thin
conductive layer of resistance R in which an electric
current I circulates. The power dissipated by Joule
effect P ¼ RI2 then produces a heat flux jðqÞ;T jðσÞ ¼
P=S between the two plates, where S is the surface of
the plates. As a consequence, the lower plate heats up

and reaches a temperature T that can be measured with
a thermocouple. From the knowledge of P and T, the
effective thermal conductivity κeff of the liquid crystal
can be obtained from the formula:

κeff ¼ jðqÞd
T � T0

(13)

Two situations can then be considered.
In the first situation, we assume that the director is

planar and free to rotate on the surface of the plates. In
this case, the system of dynamical equations given in
Section 2 can be easily solved with the phenomenolo-
gical Equations (12) in the steady-state approximation
(jðqÞ and w constant in the sample):

ΓðeqÞ ¼ 0;

w ¼ ν0jðqÞ

γ10 κ0?
;

T ¼ T0 þ jðqÞ d
κ0?

:

In this case, the texture is uniform and rotates at the
angular velocity w. We deduce from Equation (13) that
the effective conductivity is in this situation κeff ¼ κ0?.

In the second situation, we assume that the director
is perfectly aligned with a strong magnetic field parallel
to the plates. In this case, the texture cannot rotates. By
solving the system of dynamical equations given in
Section 2 with the phenomenological Equations (9),
we then find the following steady-state solution:

ΓðeqÞ ¼ � ν jðqÞ

κ?
w ¼ 0
T ¼ T0 þ jðqÞ d

κ?
;

We deduce from Equation (13) that the effective con-
ductivity in this situation is κeff ¼ κ?. Here, ΓðeqÞ iden-
tifies with the magnetic torque since it is the magnetic
field that allows to equilibrate the Leslie thermomecha-
nical torque.

We can therefore interpret κ? as the thermal con-
ductivity orthogonal to the director when the latter is
blocked, and κ0? as the thermal conductivity orthogo-
nal to the director when the latter is free to rotate. In
practice, the difference between κ? and κ0? is comple-
tely negligible because of the very small value of the
Leslie thermomechanical coefficient in usual choles-
terics [7,16,27].

In conclusion, this example shows that the choice of
forces and fluxes is indifferent. Indeed, the Leslie effect
is the same in the two conventions, even if it appears to
be reversible or dissipative depending on the choice of
forces and fluxes. This apparent contradiction is
explained by the presence of a corrective term in the

Figure 1. Thought experiment to measure the thermal con-
ductivities κ? et κ0?.
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dissipation when switching from one convention to the
other. In the next section, we generalise these results by
including the hydrodynamics and the trilinear contri-
butions in the potentials Rd and Rr.

4. Thermohydrodynamic effect of Akopyan
and Zel’dovich: generalisation in a cholesteric

In this section, we write down the complete phenomeno-
logical equations by including all viscous, thermomechani-
cal and thermohydrodynamic couplings.We show that our
approach allows to easily derive these effects – although the
involved expressions are somewhat lengthy – and that the
erroneous expression of the thermomechanical and ther-
mohydrodynamic terms given in a nematic by Akopyan
and Zel’dovich [10] can easily be corrected. Moreover, we
show that there is no additional thermomechanical and
thermohydrodynamic couplings in a cholesteric apart from
the Leslie effect, in spite of the symmetry breaking
D1h ! D1. Finally, we point out that the corrected
terms of Akopyan and Zel’dovich are perfectly equivalent
to the thermomechanical and thermohydrodynamic terms
derived by Brand and Pleiner [21,22] with their own choice
of forces and fluxes.

4.1 Derivation of the phenomenological equations

If we want to include hydrodynamic contributions, we
must include in our choice of forces and fluxes σðsÞ and
D, as shown in Equation (1). We thus make the follow-
ing choice of forces and fluxes4 which is similar to the
one of Akopyan and Zel’dovich:

f α ¼ G;

f β ¼ w
D

� �
;

jα ¼ �jðσÞ;

jβ ¼ �ΓðneqÞ

σðsÞ

� �
:

First, we derive the expression of Rd as the sum of two

bilinear functions of f α; f αf g and f β; f β

 �

respectively.
Note that we do not consider for simplicity trilinear

terms of types f α; f α;�nf g and f β; f β;�n

 �

that would
add corrective terms in �n in the thermal conductiv-
ities and the usual viscosities. By using the results of
appendices A.2.1 and A.2.2, it can be shown that the
most generic expression of Rd compatible with the
symmetries of a nematic or a cholesteric is

Rd ¼ RðqÞ
d þ RðvÞ

d ; (14)

with

RðqÞ
d ¼ κ?

2T jG?j2 þ κk
2T ðGkÞ2;

RðvÞ
d ¼ β0

2 ðdkÞ2 þ β1
2 wj j2 þ β2

2 d?
�� ��2 þ β12 d? � w

� 	 � nþ β3
2 D? : D?� 	

;

where we did the following decomposition5 for the
symmetric velocity gradient tensor D:

D ! dk ; D : ðn� nÞ; d? ; Dn� dkn;
D? ; Dþ 1

2 I� 3n� nð Þdk � n� d? � d? � n:

All the terms in Rd are invariant under reflection in the
mirror orthogonal to n; therefore, there are allowed
both in a nematic and a cholesteric.

Second, we derive the expression of Rr as the sum of

a bilinear function of f α; f β

 �

(Leslie effect) and a

trilinear function of f α; f β;�n

 �

(Akopyan and
Zel’dovich effects). Using the results of appendices
A.2.1, A.2.4 and 1.2.5, it can be shown that the most
generic expression of Rr compatible with the symme-
tries of a cholesteric is:

Rr ¼ RðtmÞ
r þ RðthÞ

r (15)

with

RðtmÞ
r ¼ ν w � G?� 	þ �1n � G? � w

� 	
m1 þ �2 G? � w� 	

m2

þ�3 w � n½ � � G?� 	
: M? þ �4n � m? � wð ÞGk;

RðthÞ
r ¼ μn � d? � G?� 	þ �5 d? � G?� 	

m1 þ �6n � d? � G?� 	
m2

þ�7 d? � G?� 	
: M? þ �8 d? �m?� 	

Gk þ �9 G? �m?� 	
dk

þ�10 dkGkm1
� 	þ �11 G? � d?

� 	
: D? þ �12 D? : M?� 	

Gk;

where we did the following decomposition6 for �n:

�n ! m1;� � n; m2;n � �� n; m?; 1
2 n � �ð Þn;

M?; 1
2 �n½ � þ �n½ � �m1 I? � 2 n�m? � 2m? � n
� 	

:

In the expressions of RðtmÞ
r and RðthÞ

r , the only terms
which are not invariant under a reflection in the mirror
orthogonal to n is w � G? and n � d? � G?� 	

, which
implies that ν and μ are pseudoscalars, with ν ¼ μ ¼ 0
in a nematic. All the other terms – invariant under
reflection – are therefore allowed both in a nematic and
a cholesteric.

Using Equations (5), (14) and (15), we finally
deduce the complete phenomenological equations in a
cholesteric:

�jðσÞi ¼ κij Gj

T � �ji wj � ζjki Djk;

�ΓðneqÞi ¼ �ij Gj þ β1wi þ βijk Djk;

σðsÞij ¼ ζijk Gk þ βkij wk þ νijkl Dkl;

(16)

where the complete expressions of the coupling tensors
κij, �ij, ζ ijki, βijk and νijkl are given in Appendix B. Note

that the Onsager relations can be directly checked in
the last three equations. In particular, we see that �ij
and ζ ijk are associated, as expected, with reversible
effects since these terms are eliminated in the entropy

production σ
�

(this can be shown by injecting the
expressions given above into Equation (1)).
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We can now give the physical interpretation of each
tensor.

The coupling tensor κij is the usual tensor of thermal

conductivity. The second law of thermodynamics σ
� �

0 imposes that κ?;k � 0.
The coupling tensors β1, βijk (containing β12) and

νijkl (containing β0;2;3) correspond to the usual viscous

dissipation. Akopyan and Zel’dovich give the same
expressions as us for these effects. It can be easily
checked that the coefficients βi are connected with
the Leslie viscosities α1�6 by the following relations:

β0 ¼ α1 þ 3α4
2 þ α5 þ α6

β1 ¼ α3 � α2 ; γ1
β12 ¼ α3 þ α2 ; γ2
β2 ¼ 2α4 þ α5 þ α6
β3 ¼ α4

Furthermore, it should be noted that in our approach, we
only have five independent coefficients instead of the six
αi. This is expected because here theOnsager relations are
automatically verified, whereas in the Leslie approach
these relations impose the so-called Parodi identity α2 þ
α3 ¼ α6 � α5 [29] (5 coefficients $ 6 coefficients + 1
linear relation). This point was already underlined by
several authors [10,22,24,29]. Finally, the second princi-

ple impose that β0;1;2;3 � 0 and ½β12�2 	 β1 þ β2.
As for �ij, it is the coupling tensor associated with the

thermomechanical effects of Leslie (coefficient ν) and
Akopyan and Zel’dovich (coefficients �1�4). Akopyan and
Zel’dovich gives the same expressions as us for these effects
in a nematic but with the wrong sign for the heat flux qTM

in Equation A.6 of Reference [10]. Here, we get the good
sign because our approach automatically verifies the anti-
symmetric Onsager reciprocity relations associated with
reversible effects.

ζ ijk is the coupling tensor associated with the
thermohydrodynamic effects of Leslie (coefficient μ)
and Akopyan and Zel’dovich (coefficients �5�12).
Again, Akopyan and Zel’dovich give the same
expression as us for these effects in a nematic,
apart from the wrong sign in the heat flux which is
corrected here.

We underline once again that in a cholesteric, the only
couplings which are not invariant under a reflection in
the mirror orthogonal to n are those associated with the
Leslie thermomechanical and thermohydrodynamic
coefficients ν and μ. This means that all the other effects
are allowed both in a nematic and a cholesteric. In parti-
cular, the corrected expression of the coupling terms of
Akopyan and Zel’dovich – originally derived in a nematic
– is the same in a cholesteric.

4.2 Equivalence with the formalism of Pleiner and
Brand

We conclude this section by giving the equivalence
between our phenomenological equations and those
derived by Pleiner and Brand [21,22,26] with their
own choice of forces and flux. With the following
choice of forces and fluxes:

f α ¼ �ΓðneqÞ

G


 �
;

f β ¼ D

jα ¼ w
�jðσÞ


 �
;

jβ ¼ σðsÞ;

these authors give the following phenomenological
equations, obtained with a method different from ours:

�jðσÞi ¼ κ0 ij Gj

T ��ji �ΓðneqÞj

� �
þ Ψjki Djk;

wi ¼ ��ij Gj þ �ΓðneqÞið Þ
γ01

� λijk Djk;

σðsÞij ¼ �Ψijk Gk þ λkij �ΓðneqÞk

� �
þ ν0ijkl Dkl:

(17)

The complete expressions of the coupling tensors κ0ij,
�ij, Ψ ijk, λijk and ν0ijkl are given in Appendix B. The

previous equation is equivalent to our phenomenolo-
gical equations given in Equation (16) on condition to
impose the following relations:

κij ¼ κ0ij � γ01T�ki�kj;
�ij ¼ γ01�ij;
ζijk ¼ �Ψijk þ γ01�lk λlij;
β1 ¼ γ01;
νijkl ¼ ν0ijkl þ γ01 λmijλmkl:

(18)

Note that these equalities are verified if and only if the left
and right hand sides have exactly the same tensorial form.
This is true for the last four equalities – as shown in
Appendix B.3 in which the full correspondence between
the phenomenological coefficients is given – but wrong in
the first equality, since�ki�kj depends on �n whereas the
thermal conductivity tensors κij and κ0ij were computed

without accounting for corrective terms in�n. Technically
speaking, the only way to get an exact correspondence
between the two conventions would be to include these
corrective terms. However, we emphasise that such terms
are extremely small and negligible as long as the director
field is distorted over a length scale much larger than the
intermolecular distance (a basic assumption in hydrody-
namics). The fact that γ01T�ki�kj 
 κij can also be
checked directly by taking the typical values of thermo-
mechanical coefficients given in the literature [16]. For this
reason, one can write that κ0? ¼ κ? and κ0k � κk to within
an excellent approximation, which finishes to show the
equivalence between the two conventions.
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5. Conclusion

We hope to have clarified the situation on the existence
of the thermomechanical and thermohydrodynamic
terms of Akopyan and Zel’dovich in a nematic liquid
crystal. To achieve this goal, we introduced a new
function equivalent to the classical dissipation function
to calculate the reversible couplings. We then used this
general formalism to derive the constitutive equations
of a nematic or a cholesteric liquid crystal. Doing this,
we realised that the choice of forces and fluxes can
influence the apparent dissipative/reversible character
of a cross-coupling in spite of the strict equivalence of
the calculated phenomenological equations. This was
explicitly shown on the example of the Leslie coupling
only present in cholesterics. We then used this general
formalism to correct the sign errors in the original
paper of Akopyan and Zel’dovich (the same error is
also made by Sonnet and Virga in their book published
in 2012 [30] when they derive the Leslie effect in
cholesterics). Note that, fortunately, these sign errors
only appear in the corrections to the heat flux, extre-
mely small and always negligible – and thus neglected
– in practice. More important, we showed that the
Akopyan and Zel’dovich terms were strictly equivalent
to those derived by Brand and Pleiner by making
another choice for the forces and the fluxes. The
equivalence relations between the terms of Akopyan
and Zel’dovich and the ones of Brand and Pleiner are
also given in the paper. Last but not least, we general-
ised the calculations to the cholesteric phase and
showed that there are no additional terms in this
phase (out of the Leslie terms, only present in
cholesterics).

Notes

1. A gradient of an electric or chemical potential would
produce the same effects, as was stressed by de Gennes
in his book on liquid crystals [24].

2. In this case, the cholesteric phase is still described by a
single director n which rotates along the helical axis.

3. Note that in Reference [24], the role of the fluxes and
forces is reversed because de Gennes prefers to write
the forces as a function of the fluxes, in opposition to
our choice of writing the fluxes as a function of the
forces. Nevertheless, our choice of forces and fluxes
is completely equivalent to the convention of de
Gennes because the swapping transformation jα $
f β and jβ $ f α preserves the Onsager relations and
the time-reversal behaviour of each quantity.

4. Note that in this equation, the second-order tensors D and
σðsÞ are by convention flattened in one-dimensional vectors.

5. Several terms of the decomposition presented in the
appendix were eliminated here because D is symmetric
and traceless (� � v ¼ 0).

6. Several terms of the decomposition presented in the
appendix were eliminated here because n � n ¼ 1.
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Appendices

Appendix A. Generic expression of a bi(tri)lin-
ear form invariant under proper rotations
around n

In this appendix, we show how to compute the most generic
bi(tri)linear form invariant under proper rotations around
the director n. First, we recall some important results of
group theory. Then, we use these results to compute five
types of invariant functions: a bilinear form of two vectors, a
bilinear form of one vector and one second-order tensor, a
bilinear form of two second-order tensors, a trilinear form of
two vectors and a second-order tensor, and finally a trilinear
form of one vector and two second-order tensors.

A.1 A few reminders on group theory
A.1.1 Action of a proper rotation on a vector
First, we recall that the action of a proper rotation of θ

around n on a vector u is represented by the matrix RðθÞ:
u0 ¼ RðθÞu; (A1)

where u0 is the transformed vector. In an orthonormal basis B
whose third axis coincides with n, the coordinates of RðθÞ are
given by

RðθÞ ¼
cos θ � sin θ 0
sin θ cos θ 0
0 0 1

0
@

1
A:

We also recall that finding the irreducible representations for
the group of proper rotations is equivalent to decompose
RðθÞ in a direct sum of non-diagonalisable square matrices,
i.e. 9P invertible such as "θ,

PRðθÞP�1 ¼ ΔαðθÞ � ΔβðθÞ�

;
ΔαðθÞ

ΔβðθÞ
. .
.

0
B@

1
CA:

As RðθÞ is diagonalisable in C, this decomposition corre-
sponds here to three 1� 1 complex matrices:

PRðθÞP�1 ¼ Δ�1ðθÞ � Δ1ðθÞ � Δ0ðθÞ;

with the matrices ΔαðθÞ and P given by

ΔαðθÞ ¼ eiαθ
� 	

P ¼
1 �i 0
1 i 0
0 0 1

0
@

1
A

The main advantage of introducing the irreducible repre-
sentations ΔαðθÞ is that the transformation property (A1) can
be rewritten under a very simple form in the diagonalisation
basis of RðθÞ. Indeed, if we project a vector u in this basis:

~u�1

~u1

~u0

0
@

1
A;Pu ¼

u1 � iu2
u1 þ iu2

u3

0
@

1
A; (A2)

Equation (A1) can then be rewritten as

~uα½ � ¼ ΔαðθÞ~uα;

where α ¼ �1; 0; 1 and ΔαðθÞ;Δα
11ðθÞ. We also emphasise

that the coordinates of u in the diagonalisation basis verify
the following complex conjugation property:

~u�α ¼ ½~uα�
 (A3)

for α ¼ �1; 0; 1.
A.1.2 Action of a proper rotation on a second-order tensor
Second, we recall that the action of a proper rotation of θ

around n on a second-order tensor M is represented by the
following operation:

M0 ¼ RðθÞMRðθÞ;

or equivalently by the following matrix-vector product:

M0
11

M0
12

M0
13

M0
21

..

.

M0
33

0
BBBBBBB@

1
CCCCCCCA

¼ TðθÞ

M11

M12

M13

M21

..

.

M33

0
BBBBBBB@

1
CCCCCCCA
; (A4)

where TðθÞ is defined as the Kronecker product of RðθÞ with
itself:

TðθÞ½ � ; RðθÞ � RðθÞ½ �

;

R11ðθÞRðθÞ R12ðθÞRðθÞ R13ðθÞRðθÞ
R21ðθÞRðθÞ R22ðθÞRðθÞ R33ðθÞRðθÞ
R31ðθÞRðθÞ R32ðθÞRðθÞ R33ðθÞRðθÞ

0
BBB@

1
CCCA:

TðθÞ has the following decomposition into irreducible
representations:

QTðθÞQ�1 ¼ Δ�2ðθÞ � Δ2ðθÞ � Δ�1ðθÞ � Δ�1ðθÞ � Δ1ðθÞ
� Δ1ðθÞ � Δ0ðθÞ � Δ0ðθÞ � Δ0ðθÞ;

with the matrices Q and ΔαðθÞ given by

Q ¼

1 �i 0 �i �1 0 0 0 0
1 i 0 i �1 0 0 0 0
0 0 0 0 0 0 1 �i 0
0 0 1 0 0 �i 0 0 0
0 0 0 0 0 0 1 i 0
0 0 1 0 0 i 0 0 0
1 0 0 0 1 0 0 0 1
0 1 0 �1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ΔαðθÞ ¼ eiαθ
� 	

Note that we find the same irreducible representations as
before – but with different multiplicities – plus two irredu-
cible representations Δ�2ðθÞ.

Similarly to the case of vectors, the transformation prop-
erty (A4) has a very simple form in the diagonalisation basis
of TðθÞ. Indeed, if we project a tensor M in this basis:
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~M�2
1
~M2
1

~M�1
1

~M�1
2
~M1
1

~M1
2

~M0
1

~M0
2

~M0
3

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;Q

M11

M12

M13

M21

M22

M23

M31

M32

M33

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

M11 �M22ð Þ � i M12 þM21ð Þ
M11 �M22ð Þ þ i M12 þM21ð Þ

M31 � iM32

M13 � iM23

M31 þ iM32

M13 þ iM23

M11 þM22 þM33

M12 �M21

M33

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

(A5)

Equation (A4) can then be rewritten as

~Mα
r

� � ¼ ΔαðθÞ ~Mα
r ;

where α ¼ �2 . . . 2, r ¼ 1 . . . ð3� αj jÞ 0; 1½ � and as before
ΔαðθÞ;Δα

11ðθÞ. Here, r represents the multiplicity index
inside a given irreducible representation. We also underline
that this decomposition verifies the following complex con-
jugation property:

~M�α
r ¼ ½ ~Mα

r �
: (A6)

A.1.3 Orthogonality relations
Last, we recall that the irreducible representations ΔαðθÞ

verify powerful orthogonality relations coming from the
Peter–Weyl theorem:

1
2π

ð2π
0
Δα
jkðθÞΔβ

lmðθÞ
dθ ¼ δαβ δjl δkm: (A7)

These relations can be greatly simplified in our case because
the dimension of the matrices ΔαðθÞ is 1� 1. Note that the
ΔαðθÞ verifies two other interesting properties:

ΔαðθÞ
 ¼ Δ�αðθÞ;

ΔαðθÞΔβðθÞ ¼ ΔαþβðθÞ;

which can be used to generalise Equation (A7):

1
2π

�
2π

0
Δα1ðθÞ . . .ΔαN ðθÞdθ ¼ δ0ðα1þαNÞ: (A8)

A.2 Generic expressions of multilinear invariant forms
We now use the previous theoretical results to compute

the generic expressions of five types of multilinear form
invariant under proper rotations around n.

A.2.1 Bilinear form of two vectors
The most generic bilinear form of two vectors u and v can

be written as

g ¼
X3
j;k¼1

Ljk uj vk;

or equivalently in the diagonalisation basis of RðθÞ:

g ¼
X1

α;β¼�1

Λαβ ~uα~vβ:

From g 2 R and Equation (A3), it can be shown that the
coefficients Λαβ must verify the following relation:

Λαβ
� �
 ¼ Λ�α�β: (A9)

Furthermore, if we impose that g is invariant under all
proper rotations around n, then the following relation must
be verified for all θ:

g ¼
X1

α;β¼�1

Λαβ ΔαðθÞ~uα½ � ΔβðθÞ~vβ� �
:

By averaging over all θ, we get

g ¼
X1

α;β¼�1

1
2π

ð2π
0
Λαβ ΔαðθÞ~uα½ � ΔβðθÞ~vβ� �

dθ:

Using the orthogonality relations in Equation (A8), we com-
pute from the last equation:

g ¼
X1

α;β¼�1

Λαβ ~uα~vβ δ0ðαþβÞ

¼ Λ�11~u�1~v1 þ Λ1�1~u1~v�1 þ Λ00~u0~v0:

According to Equation (A9), we can define

Λ1�1 ¼ Λ�11
� �
;ðλ1 þ iλ2Þ=2;

Λ00;η;

where the coefficients λi and η are real. Using these definitions
and Equation (A3), we can rewrite the expression of g as

g ¼ λ1Re ~u�1~v1

 �þ λ2Im ~u�1~v1


 �þ η~u0~v0;

or equivalently using Equation (A2):

g ¼ λ1 u? � v?� 	þ λ2 u? � v?
� 	 � nþ η ukvk

� �
;

where we have defined the scalars:

uk;u3 ¼ u � n;

vk;v3 ¼ v � n;

and the vectors:

u?;
u1
u2
0

0
@

1
A ¼ u� ukn;

v?;
v1
v2
0

0
@

1
A ¼ v � vkn;

We conclude by asserting that the most generic bilinear form
of two vectors u and v invariant under proper rotations
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around n can be written as a linear combination of the
following terms:

u? � v?� 	
; u? � v?

� 	 � n; ukvk
� �

: (A10)

In the next subsections, we will give similar results for
different types of bilinear and trilinear forms. We will omit
the associated proofs, as they are very similar to the one
given here.

A.2.2 Bilinear form of one vector and one second-order
tensor

The most generic bilinear form of one vector u and one
second-order tensor M invariant under proper rotations
around n can be written as a linear combination of the
following terms:

u? �m?r
� 	

; u? �m?r
� 	 � n; ukmr

� �
; (A11)

where we have defined the scalars mr (r ¼ 1; 2; 3) as

m1;M11 þM22 þM33 ¼ TrM;
m2;M12 �M21 ¼ �ijkniMjk;
m3;M33 ¼ M : n� nð Þ;

and the vectors m?r (r ¼ 1; 2) as

m?1;
M31

M32

0

0
@

1
A ¼ M`n�Mkn:

m?2;
M13

M23

0

0
@

1
A ¼ Mn�Mkn:

u? and uk were already defined in the previous subsection.
A.2.3 Bilinear form of two second-order tensors
The most generic bilinear form g of two second-order

tensors M and D invariant under proper rotations around n
can be written as a linear combination of the following terms:

M? : D?� 	
; M? : XD?� �� 	

;

m?r � d?s� 	
; m?r � d?s� 	 � n; mr dsð Þ (A12)

where we have defined the tensor M? as

M?;
1
2

M11 �M22 M12 þM21 0
M12 þM21 M22 �M11 0

0 0 0

0
@

1
A

¼ 1
2
ðM þM � m1 �m3½ � I? � 2m3 n� n½ �

� m?1 þm?2
� �� n� n� m?1 þm?2

� �Þ:
and the ‘n-cross’ operator X as

Xij ¼ �ijknk:

D?, d?r and dr are defined similarly to M?, m?r and mr.

A.2.4 Trilinear form of two vectors and one second-order
tensor

The most generic trilinear form of two vectors u; vf g and
a second-order tensor M invariant under proper rotations
around n can be written as a linear combination of the
following terms:

u? � v?ð Þmr; u? � v?½ � � nð Þmr; uk vk
� 	

mr;

u? �m?rð Þvk; u? �m?r½ � � nð Þvk;
v? �m?rð Þuk; v? �m?r½ � � nð Þuk;
u? � v?ð Þ : M?; u? � n½ � � v?ð Þ : M?;

(A13)

with the same conventions as in the previous subsections.
A.2.5 Trilinear form of one vector and two second-order

tensors
The most generic trilinear form of one vector u and two

second-order tensors M;Df g invariant under proper rota-
tions around n can be written as a linear combination of the
following terms:

u? �m?sð Þdr; u? �m?s½ � � nð Þdr; ukmr ds
� 	

;

u? � d?s� 	
mr; u? � d?s� � � n� 	

mr;

u?r � d?s� 	
uk; m?r � d?s� � � n� 	

uk;
m?r � u?ð Þ : D?; m?r � n½ � � u?ð Þ : D?;
d?r � u?
� 	

: M?; d?r � n
� �� u?
� 	

: M?;
M? : D?� 	

uk; M? : XD?� �� 	
uk;

(A14)

with the same conventions as in the previous subsections.

Appendix B. Expression of the coupling
tensors

In this appendix, we give the full expressions of the coupling
tensors used in the phenomenological equations and the
equivalence between the coupling tensors in each conven-
tion. In the following, the tensor δ?ij denotes the transverse
Kronecker delta:

δ?ij ¼ δij � ni nj

B.1 Convention of Akopyan and Zel’dovich
The tensor of thermal conductivity κij is given by

κij ¼ κ? δ?ij þ κkni nj:

The coupling tensor �ij associated with the thermomecha-
nical effects of Leslie, Akopyan and Zel’dovich is given by

�ij ¼ νþ �2 �kpq nk nq;p
� 	� �

δ?ij þ �1 � �3
2

� 	
nl;l nk �ikj

þ �4��3
2

� 	
�ikp nk nq np;q
� 	

nj þ �3
2 �ikp nk np;j þ nj;p

� 	
:

The coupling tensor ζ ijk associated with the thermohydro-
dynamic effects of Leslie, Akopyan and Zel’dovich is given by
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ζijk ¼ μ
2 � �6

2 �ikp nk nq np;q
� 	� �

ni �jlk þ nj �ilk
� 	

nl
þ �5

2 � �7
4

� 	
ni δjk þ nj δik
� 	

nl;l
þ �7

4 ni nk;j þ nj;k
� 	þ nj nk;i þ ni;k

� 	� �
� �7

4 � �8
4 þ �11

4 þ �12
2

� 	
ni nj;l þ nj ni;l
� 	

nl nk
� �5 � �7

2 � �10 � �12
2

� 	
nl;l ni nj nk

� �7
2 � �9

2 � �11
4

� 	
ni nj nl nk;l

þ �11
4 δik nj;l þ δjk ni;l
� 	

nl
þ �12

2 ni;j þ nj;i
� 	

nk:

The coupling tensor βijk associated with the viscosity β12
is given by

βijk ¼
β12
2

nl �ilj nk þ �ilk nj
� 	

:

The coupling tensor νijkl associated with the viscosities
β0;2;3 is given by

νijkl ¼ β0 � β2 þ β3
2

� �
ni nj nk nl

þ β2
4 � β3

2

� �
niδjk þ nj δik
� �

nl þ niδjl þ njδil
� �

nk
� 	

þ β3
2 δik δjl þ δil δjk
� 	

:

B.2 Convention of Pleiner and Brand
The tensor of thermal conductivity κ0ij is given by

κ0ij ¼ κ0? δ
?
ij þ κ0kni nj:

The coupling tensor �ij associated with all thermomechani-
cal effects is given by

�ij ¼ ν0

γ01
δ?ij

þ π1np;p δlj þ π2nj;l þ π3nl;j þ π4 � π3½ �np nj nl;p
� 	

�ikl nk

The coupling tensor Ψ ijk associated with all thermohydrody-
namic effects is given by

Ψijk ¼ � μ0

2 ni �jlk þ nj �ilk
� 	

nl

þψ1 niδ
?
jk þ nj δ

?
ik

� �
nl;l

þ ψ8 � ψ2

� 	
nl;l ni nj nk

þψ3 niδ
?
lj þ nj δ

?
il

� �
nk;l

þ ψ6 � ψ4

� 	
nk;l nl ni nj

þψ5 ni nj;l þ nj ni;l
� 	

δ?kl
þψ7 nj;l δ

?
il þ ni;l δ

?
jl

� �
nk

þψ9 nj;l δ
?
ik þ ni;l δ

?
jk

� �
nl

þψ10 ni nj;l þ nj ni;l
� 	

nk nl

Note that Brand and Pleiner [21] use the notation αi for the
coefficients ψi in the previous equation: we changed the
notation to avoid a conflict with the Leslie viscosities.
Furthermore, in their derivation of thermohydrodynamic
effects these authors did not assume incompressibility and
found 11 coefficients instead of 9 independent coefficients as
in the coupling tensor ζ ijk. However, in the incompressibility
regime, there remains only nine independent coefficients as

highlighted in the previous equation, because two terms
proportional to ψ2 δij and ψ4 δij can be absorbed in the
definition of the pressure [1,22,24].

The coupling tensor λijk associated with the dimensionless
coefficient λ is given by

λijk ¼ λ

2
nl �ijl nk þ �ikl nj
� 	

The coupling tensor ν0ijkl associated with the viscosities
ν1�3 is given by

ν0ijkl ¼ 2 ν1 þ ν2 � 2ν3ð Þni nj nk nl
þ ν3 � ν2ð Þ ni δjk þ nj δik

� �
nl þ niδjl þ nj δil

� �
nk

� 	
þν2 δik δjl þ δil δjk

� 	
:

Again, out of the five independent coefficients introduced by
Pleiner and Brand in the compressible regime [22], there
remains only three independent coefficients in the incompres-
sible regime – as in the coupling tensor νijkl of our formalism.

B.3 Equivalence between the conventions
The equivalence between the viscosities of each conven-

tion is given by

β1 ¼ γ01;γ1
β12 ¼ �λγ01;γ2
β0 ¼ 2ν1 þ ν2
β2 ¼ γ01 λ

2 þ 4ν3
β3 ¼ 2ν2

γ01 ¼ β1
λ ¼ � β12

β1

ν1 ¼ β0
2 � β3

4

ν2 ¼ β3
2

ν3 ¼ β2
4 � β12ð Þ2

β1

�������������
The equivalence between the thermomechanical coefficients
of each convention is given by

ν ¼ ν0

�1 ¼ γ01 π1 þ π2
2 þ π3

2

� 	
�2 ¼ γ01

2 π2 � π3ð Þ
�3 ¼ γ01 π2 þ π3ð Þ
�4 ¼ 2γ01π4

����������

ν0 ¼ ν
π1 ¼ 1

β1
�1 � �3

2

� 	
π2 ¼ 1

β1
�2 þ �3

2

� 	
π3 ¼ 1

β1
��2 þ �3

2

� 	
π4 ¼ �4

2β1

Note that this expression was already given in a previous
article [28], where the presence of flow was neglected.

The equivalence between the thermohydrodynamic coef-
ficients of each convention is given by

μ ¼ μ0 � ν0 λ
�5 ¼ � 2ψ1 þ ψ3 þ ψ5

� 	þ γ01 λ π1 þ π2
2 þ π3

2

� 	
�6 ¼ ψ5 � ψ3 � γ01 λ

2 π3 � π2ð Þ
�7 ¼ �2 ψ3 þ ψ5

� 	þ γ01 λ π3 þ π2ð Þ
�8 ¼ �4ψ10
�9 ¼ 2 ψ4 � ψ6 þ ψ9

� 	
�10 ¼ ψ2 þ ψ7 � ψ8 � 2ψ9
�11 ¼ �4ψ9
�12 ¼ �2ψ7

or equivalently by
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μ0 ¼ μ� β12 ν
β1

ψ1 ¼ �7
4 � �5

2 þ β12
β1

�3
4 � �1

2

� 	
ψ2 � ψ8 ¼ �10 � �11

2 þ �12
2

ψ3 ¼ � �6
2 þ �7

4

� 	� β12
β1

�2
2 þ �3

4

� 	
ψ4 � ψ6 ¼ �9

2 þ �11
4

ψ5 ¼ �6
2 � �7

4 þ β12
β1

�2
2 � �3

4

� 	
ψ7 ¼ � �12

2

ψ9 ¼ � �11
4

ψ10 ¼ � �8
4

We recall that in the incompressible regime,
ψ2 (ψ4) cannot be considered independently of
ψ8 (ψ6), as can be seen in the expression of Ψ ijk given
above.

As explained in the main text, the equivalence between
the thermal conductivity tensors κij and κ0ij can be made
exact only by including corrective terms in �n in
these tensors. This is not really a problem since these
corrective terms are extremely small, so that we can
always assume κk ¼ κ0k and κ? ¼ κ0? to within an excellent

approximation.
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