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ABSTRACT

Liquid crystals (LCs) are known to have a facile response under external electric and optical fields, which in
the past have led to various technological applications such as LC displays or self-focusing flat lenses. In this
contribution, we describe how chirality can increase the overall nonlinear optical response of frustrated liquid
crystal samples based on the formalism of Green functions. We describe how such an effect can be leveraged
to generate low-power spatial optical solitons, and also suggest possible experiments that could be derived from
this theoretical and numerical work.
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1. INTRODUCTION

A nematic liquid crystal (LC) is a mesophase associated with orientational order, with the mean orientation
of molecules at a given point called the director n. The strong response of this phase to external fields and
its intrinsic birefringence have allowed numerous optical applications, such as the LC displays widely used in
TVs, phones, laptops and desktop monitors. Interestingly, the optical field carried by a sufficiently powerful
light beam can induce a reorientation of the director n and therefore an effective modulation of the permittivity
tensor of the LC that lead to various nonlinear optical effects. Perhaps the most fascinating of these effects is the
emergence of spatial optical solitons at powers as low as ∼ 1 mW propagating in the central plane of uniformly-
aligned nematic layers. These optical solitons correspond to self-focused beams for which the optically-induced
perturbation of the permittivity exactly compensates the natural diffraction of light fields, thus allowing the
transverse amplitude profile of the beam to be preserved as it propagates. These solitons were first observed in
the 2000s by the groups of Karpierz1 and Assanto,2 and were dubbed nematicons when the light’s polarisation
and wavevector and the LC’s director are all in the same plane.

Many studies extended the seminal works of Assanto and Karpierz during the past 20 years, showing that
spatial optical solitons in LCs are robust carrier of optical information which, contrary to solitons in Kerr media,
are not subject to catastrophic collapse of the beam thanks to the nonlocal response of the liquid crystal.3 Optical
solitons can be steered in the plane of the sample by tuning the unperturbed director with external fields,4,5

and they can undergo self-induced mode transformation6 or exhibit bistability near a first order transition.7
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Figure 1. Our system consists of a laser beam (green) propagating in a chiral LC layer confined between two glass plates
(blue). The unperturbed director field n0 is imposed by the anchoring potentials on the plates and is in the plane of
the sample (yz). The wavevector p is chosen so that the Poynting vector S (resp., the electric field E) is parallel to the
z-direction (resp., y-direction).

They can also assist random lasing in dye-doped liquid crystals,8 or interact in highly nontrivial ways with the
Pancharatnam-Berry geometric phase of LCs.9

In a recent paper,10 we showed that chirality was playing a major role in the nonlinear optical response of LC
samples with homeotropic boundary conditions (n is anchored normally to the confining plates of the sample).
By adding chiral molecules to such a sample—thereby obtaining a so-called frustrated cholesteric sample— we
experimentally and numerically showed that the overall response of the LC to external fields was boosted by
chirality and that periodically self-focused beams with an intricate field pattern bouncing between the plates of
the sample could be generated at a lower power than in achiral media. This chirality-enhancement effect was
suggested to be a straightforward improvement for the various solitonic effects described above, possibly leading to
soliton-based photonics devices with even lower power consumption. However, the particular sample geometry
studied in this previous contribution prevented any advanced theoretical analysis because of the associated
complicated periodic field patterns, and could not be directly compared to the well-understood case of nematicons
(beam propagating parallel to the plates of the sample).

The aim of this paper is to overcome these shortcomings by focusing on a simpler—but still chiral and
frustrated—class of LC samples with a far-field director parallel to the confining plates of the sample. In Sec. 2,
we present our theoretical approach to model the nonlinear optical propagation of light beam in such samples
and explicitly show that chirality is also boosting the nonlinear optical response of these frustrated samples based
on the formalism of Green functions. In Sec. 3, we explore how the power of a fundamental soliton vary with the
parameters of our system and also present numerical simulations allowing to validate our theoretical approach.
Finally, we draw our conclusions in Sec. 4 and suggest a few experiments that could be based on this purely
theoretical and numerical work.

2. THEORETICAL MODEL

In this section, we introduce the theoretical equations necessary to model the reorientation of frustrated chiral
LC under optical fields and the associated self-focusing effect for the propagation of laser beams. Fig. 1 shows
the system considered here, which consists of a cholesteric layer of thickness h confined between two glass plates
treated for planar anchoring along the in-sample plane direction n0 = cos θ0ez−sin θ0ey. When the spontaneous
twist q = 2π/P of the cholesteric (with P the pitch of the equilibrium cholesteric helix in an unconfined sample)
is smaller than a critical value qc, the fully unwound director field n = n0 is a metastable state of the LC system.
The exact expression of qc will be given later in this section, but we can already note that it has the same order
of magnitude as π/h, with h the sample thickness. Note that for intermediate values of spontaneous twist and
LCs with standard anisotropy of elastic constants, the π-twisted director field is also a possible metastable state
with lower energy than the unwound director field.11 Here, we assume that the whole sample is always filled
with the unwound state, which in experiments can be attained by transitioning the LC sample from the isotropic
phase to the cholesteric phase under the action of a strong external field imposing n = n0, and then cutting out
the field once the sample is fully transitioned.



When weakly perturbed by an optical field E, the director field can be written as n = n0 +δn with δn ⊥ n0

the director field deviation. The latter quantity introduces spatial variations in the permittivity tensor ε, which
may affect the propagation of the optical field and therefore acts as a source of optical nonlinearity. More
specifically, we develop at first order in δn the permittivity tensor:

ε =

{
ε? + δε, |x| < h/2

n2
pI, |x| > h/2

(1)

where ε? ≡ n2
oI+

[
n2
e − n2

o

]
n0⊗n0 is the unperturbed LC permittivity tensor, δε =

[
n2
e − n2

o

]
[n0 ⊗ δn+ δn⊗ n0]

is the perturbation of permittivity tensor, and ne, no and np are the extraordinary, ordinary, and glass plates’
refractive indices. In the next two subsections, we derive the coupled differential equations that governs the
evolution of δn and E in our chiral system.

2.1 Beam propagation equation

We are interested in a laser beam of wavelength λ propagating in the plane of the sample along the z-direction
(see Fig. 1). We write the electric field associated with such a beam as E = exp [ik0p · r]A, with k0 = 2π/λ the
wavevector in empty space, p the renormalized wavevector, and A a slowly-spatially-varying vector amplitude.
Since the propagation medium is birefringent, the renormalized wavevector is in general not parallel to the
Poynting vector S ‖ ez, and can be shown to be p =

√
ε?yy
[
ez − (ε?yz/ε

?
yy)ey

]
. Starting from the wave equation

in anisotropic media as given in Ref.,12 we obtain after applying the well-known Slowly Varying Envelope
Approximation (SVEA) and keeping only leading nonlinear contributions in δε:

{
2ik0pz [∂z + ν∂y] +Dx∂2

x +Dy∂2
y + k2

0 ε̄
}
Ay = 0, (2)

where we defined (assuming no ≈ np for simplicity, which is true for the glass plates and liquid crystals considered
here):

ν =

{
0, |x| ≤ h/2
−ε?yz/n2

p, |x| > h/2
ε̄ =

{
δεyy, |x| ≤ h/2
n′2p − ε?yy, |x| > h/2

(3)

Dx = ε?yy/n
2
e Dy =

{[
ε?yy/(neno)

]2
, |x| ≤ h/2

p2
z/(n

2
p − p2

z), |x| > h/2
(4)

with n′p =
√
n2
p − p2

yp
2
z/(n

2
p − p2

y). Eq. (2) corresponds to the paraxial beam propagation equation for the

amplitude Ay. It can be checked to be identical to the one given in Ref.,13 although our equation is slightly
more general since it also includes confinement effects due to the jumps of permittivity at the LC/glass plate
interfaces∗. This equation is formally equivalent to the Schrödinger equation, with the time replaced by the
propagation distance z. The diffraction operator Dx∂2

x +Dy∂2
y is responsible for the spreading of the transverse

amplitude profile of a propagating beam, whereas the permittivity modulation ε̄ is formally equivalent to a
potential allowing the confinement of the light fields. Note that the other components Ax and Az of the vector
amplitude have amplitudes much smaller than Ay. They can be expressed as a differential operator times Ay at
leading order in the SVEA approach:

Ax ≈
[
i(py/k0)∂x − δεxy
εxx − p2

y − p2
z

]
Ay � Ay, Az ≈

[
i(pz/k0)∂y − δεyz

εzz − p2
y

]
Ay � Ay. (5)

We focus on the regime of strongly confined light in very thin samples, and therefore use a similar approach
than Karpierz et al.1 by writing Ay(x, y, z) = A(y, z) ψ(m)(x, z), where ψ(m) is the y-polarized waveguide mode

∗We also remark that the angle θ0, which here is defined as the angle between the director and Poynting vector, is
defined differently in the aforementioned reference as the angle between the director and wavevector. Our choice leads to
considerably simpler expressions for the coefficients involved in the beam propagation equation.



of order m of our system. Its expression in the LC slab can be calculated as:

ψ(m)(x, z) = sin
[
ξ(m)k0x−

mπ

2

]
exp

{
− ipz

[
ξ(m)

]2

2n2
e

k0z

}
, (6)

where the renormalized wavevector ξ(m) is solution of the following transcendental equation†:

ξ(m)Xc + sin−1

(
ξ(m)

∆n

)
=
mπ

2
, (7)

with ∆n = ne
√

1− (n′p/pz)2 and Xc = k0h/2. Integrating Eq. (2) times [ψ(m)]? over the interval x ∈ [−h/2, h/2]

using the ansatz defined above for Ay yields an effective (1+1)D beam propagation equation for the amplitude
A(y, z), as in the approach of the Karpierz:1

[
2ik0pz∂z +Dy∂2

y + k2
0〈δεyy〉

]
A = 0, with 〈δεyy〉 ≡

∫ h/2
−h/2 δεyy

∣∣ψ(m)
∣∣2 dx

∫ h/2
−h/2

∣∣ψ(m)
∣∣2 dx

. (8)

〈δεyy〉 can be interpreted as the x-averaged nonlinear optical response of the LC material, and unlocks the
possibility of compensating the diffraction term Dy∂2

y when the beam power is high enough. Our approach,
although simplistic, allows us to completely eliminate the diffraction along the x-direction and to focus on what
happens to the beam profile in the y-direction, i.e. in the plane of the sample.

2.2 Molecular reorientation equation

The director field deviation can be calculated from the equations of nematoelasticity,11 by developing at second
order in δn the total free energy of the system and then minimizing it with respect to δn. Writing the deviation
as δn = n⊥e⊥ + n‖e‖, with e‖ ≡ n0 × ex and e⊥ ≡ e‖ × n0, we obtain:

H

(
n⊥
n‖

)
=
ε0εa
2K1
<
(

[E · e⊥] [E ·n0]
?

[
E · e‖

]
[E ·n0]

?

)
, (9)

where H is a self-adjoint differential operator governing the linear response of the LC under the action of external
fields:

H = −
(

∂2
⊥ + κ21∂

2
‖ + κ31∂

2
n 2qκ21∂n + (1− κ21)∂‖∂⊥

−2qκ21∂n + (1− κ21)∂‖∂⊥ κ21∂
2
⊥ + ∂2

‖ + κ31∂
2
n

)
, (10)

with ∂⊥ ≡ e⊥ ·∇, ∂‖ ≡ e‖ ·∇, ∂n ≡ n0 ·∇, and κij ≡ Ki/Kj . The constants K1−3 corresponds to the usual
splay, twist and bend elastic constants of the LC, and εa is the anisotropy of relative dielectric permittivity
evaluated at the frequency of the external field E. The deviations n‖ and n⊥ are respectively associated with
in-sample-plane and out-of-sample-plane molecular reorientations in our particular sample geometry.

As explained above, the unwound state n = n0 is only stable for a finite range of spontaneous twist q ∈
[−qc, qc]. The theoretical expression of qc can be easily calculated by examining the determinant of the operator
H in Fourier space. Indeed, qc should corresponds to the minimal value of q for which this determinant becomes
zero for at least one Fourier mode, which indicates a change of sign of the free energy curvature with respect to
perturbations proportional to this particular Fourier mode. Doing this analysis, we find:

qc =
π

h

[
1 +
√
κ12

2
√
κ23

]
. (11)

Above this threshold, a periodic unstable mode develops along the direction of n0, associated with a wavevector

q‖ = (π/h) (κ23/κ31)
1/4

. To the best of our knowledge, this instability was never observed experimentally,

†Note when the mode index m is too big, this equation no longer admits a solution, which of course means that there
are only a limited number of waveguide modes.



probably because it is not trivial to stabilize the metastable planar unwound cholesteric when q > π/(2h);
indeed, since qc > π/(2h) for common liquid crystals with K2 smaller than K1,3, the π-twisted director field will
be the lowest energy state of the system when q ∈ [π/2h, qc].

11 In such a case, localized domains with a π-twist
of the director field will grow and eventually completely fill the LC sample, thus completely hiding the transition
described above and destroying the unwound state that is at the core of this work. Here, we assume that the
potential nucleation of π-twisted domains in a given LC sample was prevented by transitioning the sample from
the isotropic phase to the cholesteric phase under the action of a strong field imposing n = n0. We also assume
that |q| < qc so that the unwound director field is always metastable, and will plot our results with respect to
the rescaled spontaneous twist q/qc.

The reorientation equation (9) describes in a very general way the linear response of unwound chiral LC
under arbitrary external AC fields E, and is actually valid for any director orientation n0 imposed by the
boundary plates‡, where the Dirichlet boundary conditions n‖ = n⊥ = 0 must be imposed. We now simplify this
equation assuming that n0 is the in-sample-plane orientation defined earlier and E corresponds to the optical
field described in the last section (in which case εa is simply n2

e − n2
o). Since we are interested in the coupled

light-matter equations, we found it very convenient to introduce the so-called photonics potentials associated
with the molecular reorientations n‖ and n⊥:

Γ‖,⊥ ≡
K1c

√
ε?yy

ε?yzP
n‖,⊥, (12)

where P is the beam power contained inside the LC slab, and can be calculated at leading order in Ay as:

P =
ε0c
√
ε?yy

2

∫ h/2

−h/2

∫ ∞

−∞
|Ay|2 dx dy. (13)

Switching back to the referential xyz for the derivatives and assuming negligible z-derivatives (which is true for
a fundamental optical soliton propagating along z, as considered here), we find that Eq. (9) can be rewritten as:

(
L(1, η⊥) qηq∂y − ηc∂x∂y

−qηq∂y − ηc∂x∂y L(κ12, η‖)

)(
Γ⊥
Γ‖

)
=

(
0
J

)
, (14)

where L(η, η′) ≡ −η∂2
x − η′∂2

y is minus an anisotropic laplacian and J ≡ [Ay|2/
∫ h/2
−h/2

∫∞
−∞ |Ay|

2
dx dy is the

renormalized intensity profile of the beam. The following elastic anisotropy factors were defined:

η⊥ = κ21 cos2 θ0 +κ31 sin2 θ0, η‖ = cos2 θ0 +κ31 sin2 θ0, ηq = 2κ21 sin θ0, ηc = (1−κ21) cos θ0. (15)

Note that we only kept the leading contribution in Ay when developping the field E, neglecting the small Ax
and Az components as in the original approach of Conti et al. in achiral media.13

2.3 Coupled light-matter equations and Green functions

To summarize, the coupled light-matter equations described in Eqs. (8,14) are:

[
2ik0pz∂z +Dy∂2

y +
2k2

0P

P0
Γeff

]
A = 0, (16)

H

(
Γ⊥
Γ‖

)
=

(
0
J

)
, (17)

with P0 = K1c
√
ε?yy/[ε

?
yz]

2 a typical power and H the matrix differential operator on the left-hand-side of
Eq. (14). Under this form, the optical non-linearity clearly appears to be proportional to the beam power P
and modulated by the effective photonics potential Γeff ≡ 〈Γ‖〉. Contrary to the classical case of nematicons in

‡However, note that the critical spontaneous twist qc derived here is only valid for in-sample-plane director orientation
n0.



achiral media,13 one must take into account both components of the director field in the reorientation equation
since chirality is coupling them in a non-trivial way§.

To calculate the photonics potential Γ‖, one can formally use the Green function G of the differential operator
H, and more specifically its bottom right component which we denote by G‖:

Γ‖(x, y) =

∫ h/2

−h/2

∫ ∞

−∞
G‖ (x, x′, y − y′)J (x′, y′) dx′ dy′. (18)

Note that one cannot assume translational invariance in the x direction because of the boundary conditions
n = n0 at the confining plates of the sample. We deduce from the last equation the effective photonics potential:

Γeff(y) =

∫ ∞

−∞
Geff (y − y′)Jeff (y′) dy′. (19)

where we defined the effective intensity profile in the y-direction Jeff ≡ |A|2/
∫
|A|2dy and the effective Green

function:

Geff(y) ≡
∫ h/2
−h/2

∫ h/2
−h/2G (x, x′, y)

∣∣ψ(m)(x)
∣∣2 ∣∣ψ(m)(x′)

∣∣2 dx dx′

[∫ h/2
−h/2

∣∣ψ(m)(x)
∣∣2 dx

]2 . (20)

Since the y-direction is not confined, one can easily see that Γ̃eff = G̃eff J̃eff , where a tilde indicates a Fourier
transform over y. The general expression of G̃eff is quite complicated, and we refer to the appendix for our
approach to calculate it. Here, we will simply remark that the role of chirality in the response of the confined
LC can be easily deduced from an approximate expression of G̃eff(qy) (with qy the Fourier frequency along
y) assuming that the LC response along the x-direction can be modeled by a single discrete Fourier mode at
frequency qx = π/h:

G̃eff(qy) ∼ q2
x + η⊥q2

y(
q2
x + η‖q2

y

) (
κ21q2

x + η⊥q2
y

)
− q2η2

qq
2
y

. (21)

Indeed, this expression directly shows that G̃eff increases when q increases, with a possible divergence at the
threshold of instability q = qc described earlier. Therefore, one can expect that chirality is enhancing the
nonlinear optical response of the LC, as verified numerically in the next section.

We conclude this section by providing an estimation of the power necessary to generate a fundamental optical
soliton. We follow the classical approach presented in the reference book on nematicons edited by Assanto14

by only keeping the first two terms in the Taylor expansion of the photonics potential in Eq. 16. Intuitively,
this is equivalent to saying that the potential Γeff has a parabolic form allowing to confine the beam, similar
to a gradient-index optical fiber. This approach is exact only in the ideal limit of infinite non-locality with a
sufficiently regular Green function, but nevertheless provide a reliable estimation of the threshold of creation of
optical soliton in our system. Assuming amplitude solutions of the form A = A0 exp

{
−y2/(2ω2

0) + ikzz
}

, we
find:

0 ≈
{

2ik0pz∂z +Dy∂2
y +

k2
0P

P0

[
2Γeff(0) + Γ′′eff(0)y2

]}
A

=

{[
2k0PΓ(0)

P0
− 2k0pzkz −

Dy
ω2

0

]
+

[Dy
ω4

0

+
k2

0PΓ′′eff(0)

P0

]
y2

}
A.

(22)

The soliton power P and nonlinear correction kz to the wavevector can be deduced by equating to zero both
terms from the last equation. Here, only the soliton power interests us:

P

P0
=

Dy
k2

0ω
4
0 [−Γ′′eff(0)]

, (23)

§Conversely, when q = 0, one can fully eliminate Γ⊥ from the problem and search a solution for Γ‖ with the same
symmetry as the intensity profile J .



with:

− Γ′′eff(0) =

∫ ∞

−∞
q2
yG̃eff(qy) exp

{
−
[qyω0

2

]2} dqy
2π

. (24)

The last two equations allow a convenient numerical calculation of the fundamental soliton power P for a given
beam waist ω0, elastic anisotropy factors κ21 and κ23, far-field director angle θ0, and rescaled spontaneous twist
q/qc. When q = 0 and κ21 = κ23 = 1, these equations are very similar to the ones given in Refs.13,14 (with the
exception that these references focus more on 2+1 beam propagation with negligible role of the sample plates). In
the next section, we examine how the soliton power changes with all the parameters enumerated above, and also
give a few examples of numerically calculated solitons with a general numerical scheme that one of us recently
introduced.

3. THEORETICAL AND NUMERICAL RESULTS

3.1 Theoretical predictions for the soliton power

To gain insight on how the fundamental soliton power is affected by chirality, sample geometry, and elastic
anisotropy, we calculated P using Eqs. (23, 24) for various sets of parameters. Eq. (24) was approximated at a
relative precision of 10−4 using Mathematica. In all calculations, we used the sample thickness, light wavelength

Table 1. Values of the sample thickness, light wavelength and material constants used in all our calculations. The material
constants corresponds to the liquid crystal E7 at room temperature15,16 and typical crown glasses.17

h (µm) λ (µm) K1 (pN) ne no np

2 0.5 11 1.746 1.522 1.51
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a
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Figure 2. (a) Existence curve Pω0 of fundamental nematicons as a function of the transverse waist ω0, with θ0 = π/4.
(b) Chirality-enhancement factor Pa/P as a function of ω0, with Pa (resp., P ) the soliton power at q/qc = 0 (resp.,
q/qc = 0.9). (c) Chirality-enhancement factor Pa/P [q/qc] as a function of q/qc, with ω0 = 1 µm. (d) Soliton power as a
function of θ0, with ω0 = 1 µm. In (a–d), the elastic anisotropy is neglected (κ21 = κ23 = 1).
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Figure 3. (a) Soliton power as a function of the elastic constants ratio κ21 and κ23. (b) Chirality-enhancement factor
Pa/P as a function of κ21 and κ23. In both graphs, we chose q/qc = 0.9, θ0 = 3π/8 and ω0 = 1 µm. Since P/Pa is roughly
independent of the birefringence, we also plotted in (b) dots associated with common liquid crystals based on measured
values of their elastic constants at room temperature.15,16,18,19

and material constants defined in Table 1, while varying the parameters ω0, θ0, q/qc, κ21 and κ23. We always
assumed a fundamental waveguide mode along the x-direction (m = 1).

We first focus on the simple case of isotropic elasticity (κ21 = κ23 = 1). Fig. 2a presents how Pω0 evolves
as a function of the beam waist ω0. For waists much higher than the sample thickness, one can observe that
P ∝ 1/ω0; this scaling is different from the usual case of nematicons unconfined by the sample plates (P ∝ 1/ω2

0)
because in our system the extent of the optical field in the x-direction is already fixed by the chosen waveguide
mode. Conversely, at waists smaller than the sample thickness, the soliton power typically varies as 1/ω3

0 . We
emphasize that a soliton with a waist very different from the sample thickness is likely unstable with respect to
the modulational instability,14 and therefore could decompose into an array of solitons in the direction of the
highest optical extent (x if ω0 � h, y if ω0 � h). Since analyzing this instability is beyond the scope of this
paper, we focus here on the case of intermediate waists comparable to the sample thickness.

Fig. 2a also shows that the soliton power decreases when q/qc increases, which is fully compatible with the
chirality-enhanced LC response already noted in the last section. To better understand this effect, we introduce
the chirality-enhancement factor Pa/P , where Pa corresponds to the soliton power in achiral media (q/qc = 0).
In Fig. 2b, we show how this factor evolves as a function of the beam waist when P is calculated just below the
threshold of instability (q/qc = 0.9). As visible, the boost given by chirality is maximal when ω0 ≈ 1.2 µm ∼ h/2,
whatever the value of the far-field director angle θ0. This is not really surprising, since this condition is equivalent
to saying that the typical beam extent in the y-direction should be comparable to the sample thickness, and
therefore the cholesteric pitch since q/qc = 0.9. In short, one can expect a relevant role of chirality if twist has
sufficiently room to develop inside the disturbed domain defined by the light beam. This is the reason this paper
is focused on the case of light strongly confined between the plates of the sample: axisymmetric beams with
lateral extent much smaller than the sample thickness (and therefore than the cholesteric pitch) typically exhibit
a much weaker chirality-enhancement effect than here, and are thus not too different from achiral nematicons.

Fig. 2c shows the same chirality-enhancement factor as in Fig. 2b for three different values of θ0, plotted
against the rescaled twist q/qc instead of the beam waist ω0. Therein, one clearly sees that the higher θ0 is, the
stronger the chirality-enhancement factor is when q/qc increases—an effect which is also visible in Fig. 2b. This
is expected since θ0 = π/2 (far-field director orthogonal to the direction of light propagation) corresponds to the
direction of the first unstable Fourier mode just above the threshold of instability qc, as already noted above.
Below the transition, this mode is partially excited by the optical perturbation, but is of course stable since
q < qc. As a consequence, the chirality-enhancement effect that our theoretical model and numerical simulations
exhibit can be understood as a pre-transitional effect induced by the frustration of our chiral sample, similar
to the increased transverse response that one could get from an elongated elastic beam submitted to a normal
pressure below the threshold of buckling.



A simple examination of Eq. (23) shows that P ∝ (P/Pa)P0 ∝ (P/Pa)/ sin2(2θ), which means that although
P/Pa (inverse of the chirality-enhancement factor) goes to zero below the threshold of instability when θ0 → π/2,
the actual soliton power will always be > 0, and should even diverge when θ0 → π/2. This is simply because
the amplitude of molecular reorientation goes to zero as the far-field director becomes aligned with the optical
field, which implies that it is harder and harder to get a significant nonlinear optical response when θ0 → π/2,
whatever the magnitude of q/qc. At the end of the story, only the power P matters when trying to generate
a soliton, not the enhancement factor Pa/P . Fig. 2d therefore plots the soliton power P as a function of the
far-field director angle θ0 for three different values of q/qc. This figure shows that in an achiral media, one need a
power of ∼ 2.2 mW to generate a fundamental soliton when θ0 = π/4, which roughly corresponds to the minimal
soliton power across all director angles. As the rescaled spontaneous twist q/qc increases, the range of far-field
director angles that allows to generate a soliton at the same power of ∼ 2.2 mW greatly widens. In short, the
chirality-enhancement effect that we demonstrate here is also allowing, for a given input power, the generation
of solitons along a much wider range of propagation directions than in the achiral case. This effect could find its
use for wide-angle steerage of optical solitons in dedicated photonics devices.

Finally, we quickly describe how the soliton power vary when anisotropic elastic constants are taken into
account (κ21 6= 1 and κ23 6= 1), with fixed typical values for the other parameters (see legend of Fig. 3). Fig. 3a
shows the color-coded variations of P with κ21 and κ23, and demonstrate that solitons can be generated at the
lowest power for a given birefringence when K2 � K1, whatever the value of κ23 = K2/K3. This means that
a low free energy cost for twist deformation modes is favored by the chirality-enhanced optical solitons studied
here. In addition, Fig. 3b shows how the chirality enhancement factor varies with κ21 and κ23. This factor
is roughly independent of the birefringence, so that one can make an easy comparison between different liquid
crystals with given anisotropy of elastic constants. Interestingly, the boost that chirality gives to the nonlinear
optical response is roughly maximal for three widely-used liquid crystals (7CB, E7 and CCN-37) indicated by
dots in Fig. 3b, which means that one does not need uncommon liquid crystals with pathological Frank elastic
constants to observe a significant chirality-enhancement effect.

3.2 General beam propagation simulations of chirality-enhanced solitons

We now describe numerical results obtained with a general scheme that models both light propagation and
molecular reorientation in arbitrarily complex birefringent medium, even beyond the linear response considered
in our theory. This scheme is very similar to the one described in a previous paper,10 in that it consists of
repeated interleaved beam propagation steps (BPM steps in the following) allowing to propagate the optical
field for a given director field, and LC relaxation steps allowing to the calculate the director field for a given
distribution of optical field. These steps are repeated until the relative changes of both director and optical
field are below 2 · 10−5. The LC relaxation steps are performed using the gradient-descent method described
in Ref.10 As for the BPM steps, we used the general paraxial formalism described in Ref.12 since the sample
geometry considered here (arbitrarily tilted in-sample-plane director) is more general than the one considered in
Ref.10 (homeotropic director). All calculations were made using the constants defined in Table. 1, K2 = 7 pN,
K3 = 18 pN, θ0 = 70◦ and ω0 = 1 µm. These material constants are associated with the liquid crystal E7 at
room temperature.15,16 In our numerical code, the input optical field is defined by first calculating numerically
the fundamental y-polarized waveguide mode along the x-direction (m = 1) using the ARPACK++ library, and
then multiply this waveguide mode by a Gaussian of waist of ω0 along the y-direction.

In Fig. 4a, we show the simulated x-averaged intensity of a beam propagating along z with a vanishingly
small power (no molecular reorientation); as expected, this beam is linearly diffracting in the y-direction (but
stays confined in the x-direction thanks to the negative jump of permittivity at the sample plates). Conversely,
we show in Fig. 4b (resp., Fig. 4c) the same propagating beam, but with a nonzero power P ≈ 3.76 mW and
a rescaled spontaneous twist q/qc = 0 (resp., q = qc = 0.9). In both cases, self-focusing is visibly present
thanks to the nonlocal reorientation of LC molecules, but only in the chiral case q/qc = 0.9 is the diffraction
fully compensated by the nonlinear optical response, thus giving rise to an almost perfectly z-invariant solitonic
amplitude profile. This observation is confirmed more quantitatively in Fig. 4d, where we plot the rescaled waist
ω(z)/ω0 against the propagation distance z for the beams of Fig. 4a–c. Thus, our general (2+1)D nonlinear beam
propagation simulations confirm the same chirality-enhancement effect than in our simplified effective (1+1)D
theoretical model.
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Figure 4. (a) Simulated x-averaged intensity of a diffracting beam (P = 0) with ω0 = 1 µm. (b) Same as (a) with
P = 3.76 mW and q/qc = 0. (c) Same as (a) with P = 3.76 mW and q/qc = 0.9. (d) Rescaled waist ω(z)/ω0 as a function
of propagation distance z for the beams of (a–c). (d) Maximal director deviations n‖ and n⊥ after a propagation distance
z = 200 µm, as a function of q/qc.
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Figure 5. Cylindrical-glyph-based plots of the director field associated with the beam of Fig. 4b (a) and Fig. 4c (b). The
cylinders are colored depending on their deviation from the undeformed director field n0 (in white), taking into account
the antipodal symmetry n→ −n as shown on the right.



To check how strongly the nonlinear optical response is amplified by chirality, we also plot in Fig. 4e the
maximal in-sample-plane and out-of-sample-plane director deviations n‖,⊥ in the whole computational box as a
function of q/qc. At q/qc = 0.9, n‖ is 2.15 times bigger than in the achiral case, which is also exactly what our

theoretical model predicts when numerically integrating G̃eff J̃eff . However, we emphasize that the soliton power
predicted by our theoretical model (P ≈ 2.66 mW) is 30 % smaller than the one needed in the general simulation
to generate a fundamental soliton at q/qc = 0.9 (P ≈ 3.76 mW). This quantitative difference is likely due to the
approximations made in our model, most notably the fact that the true solitonic amplitude profile is not exactly
a waveguide mode times a Gaussian. Nevertheless, our theoretical model is in good qualitative agreement with
the simulations and allows to get a precious insight on the variations of the soliton power with all parameters at
a much lower computational cost.

We close this section by presenting in Fig. 5 the xy-cross-sections of the director fields associated with the
numerically simulated solitons of Fig. 4b–c. The orientation of the director is represented by cylindrical glyphs;
deviation angles from the far-field director n0 were amplified by a factor 6 for easier visualization of the director
field patterns. We encode each particular director orientation with colors on the S2 sphere with antipodal
symmetry n → −n (see right of Fig. 5), with white corresponding to the far-field director n0. Blue-like colors
indicates a molecular reorientation towards the optical field along y, while red-like and green-like colors indicate
an out-of-sample-plane reorientation. In the achiral case (Fig. 5a), the reorientation is fully contained in the
yz plane formed by the beam wavevector and polarisation, as expected from classical theory on nematicons.14

Conversely, in the chiral case (Fig. 5b), twist develops in the y-direction with a nonzero out-of-sample-plane
molecular reorientation. The positive sign of the twist can be readily checked by determining the sequence of
colors along the y-direction, which is green-blue-red and corresponds to a right-handed circuit around n0 on the
S2 sphere on the right of Fig. 5 (with the thumb oriented along the y-direction).

4. CONCLUSION

We presented a theoretical approach to model the coupling between beam propagation and optically-induced
director reorientation in frustrated chiral planar LC. Our model shows that chirality generally amplify the
response of the LC to external fields and therefore the nonlinear optical response of the material, thus allowing
to generate optical solitons at lower power than in achiral samples. Furthermore, the chiral sample geometry
proposed here allows for a wider range of angles between the director and the soliton axis when the input power is
fixed. Our theoretical model is only approximate since it relies on an effective average of the wave equation along
the sample normal, but is nevertheless in good qualitative agreement with general (2+1)D simulations of optical
solitons. To ensure that our results can be easily reused, we created an open-source dataset on the platform
Zenodo, which includes the simulated optical solitons as well as Mathematica and python scripts facilitating
calculations for our theoretical model. This dataset can be accessed from Ref.20

We suggested that the unwound chiral samples necessary to observe the optical solitons described here could
be experimentally realized by transitioning the LC from isotropic to cholesteric phase under the action of a
strong external field imposing n = n0. For example, one could use a Halbach ring magnet similar to the one
of Ref.,21 which can typically impose a magnetic correlation length as low as 1.5–2 µm for most cyanobiphenyls
and should prevent the formation of π-twisted domains when h > 2 µm, even for intermediate spontaneous twist
q ∈ [π/(2h), qc] for which these domains are the lowest energy state. First proof-of-concept experiments could
be done in samples thicker than the one studied here, since it would simplify the coupling of the input beam
through the side of the sample. One could also try to experimentally determine if there is a chirality-enhanced
nonlinear optical response in chiral π-twisted LC cells, which are much easier to create than the unwound planar
chiral LCs of this paper. Finally, beyond the optical solitons of this study, we believe that the chirality-enhanced
response of LC described here could be used to boost the mechanical interaction of optical beams with localized
LC patterns or LC colloids,22 or more generally the optomechanical footprint that light leaves inside LCs,23 thus
showing once again the fundamental role that chirality plays in the properties of soft materials.



APPENDIX A. CALCULATION OF THE EFFECTIVE GREEN FUNCTION

We describe here how to calculate the effective Green function G̃eff introduced in the main text. We express it
under the following form:

G̃eff =

∫ h/2
−h/2

∣∣ψ(m)(x)
∣∣2 Γ̄‖(x) dx

[∫ h/2
−h/2

∣∣ψ(m)(x)
∣∣2 k0dx

]2 , (25)

where Γ̄‖ can be found by solving the following system of differential equations:
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After enumerating the possible eigenmodes and particular solution for the last equation, we find that the
solution for Γ̄‖ can be expressed as:

Γ̄‖ = Aψ
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2
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with σ± = ±1. The eigenvalues α+ and α− are defined as:
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2
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with η′⊥ = η⊥/κ21. The solution for Γ̄⊥ can be found from the first row of Eq. (26), but its expression will not

be given here since it is quite lengthy and not useful for the calculation of G̃eff . By applying Dirichlet boundary
conditions for Γ̄⊥ and expanding the second row of Eq. (26), we find that the coefficient Aψ is exactly given by:

Aψ =
k2

0
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y + α2
ψ

)

(
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ψ

)(
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, (29)

with αψ ≡ 2k0ξ
(m), and that the coefficients A± and Aa must be solution of the following linear system:
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with sinhc(u) ≡ sinh(u)/u and tanhc(u) ≡ tanh(u)/u. The following quantities were defined to shorten the
expression of the linear system:

Φ± ≡
α±h

2
, Φq ≡

qh

2
, ζψ ≡

δΦ2
+δΦ

2
−Φψ

4
(

Φ2
ψ + η⊥Φ2

y

) , (33)

Φy ≡
qyh

2
, δΦ2

± ≡ Φ2
± − η⊥Φ2

y, ζa ≡ η⊥Φ2
y

[
δΦ2

+

tanhc Φ−
− δΦ2

−
tanhc Φ+

]
, (34)

and finally:
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When κ21 = 1 and q = 0, Eqs. (31,32) are undetermined and must be replaced by the conditions Aa = 0 and
A+ = A−.

Although the linear system above can be solved analytically, we were not able to sufficiently simplify the
lengthy resultant expressions. For this reason, we only performed numerical solving of this system by precalcu-
lating all coefficients for a given set of parameters. Once the solution for A± and Aa is obtained, one can finally
deduce the effective Green function from Eq. (25,27):

G̃eff =
h

X2
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2
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Note that the coefficient Aa does not appear in the expression above because sinh(α±x)
∣∣ψ(m)(x)

∣∣2 is an odd
function of x and therefore yields 0 after integration. Nevertheless, this coefficient is generally nonzero when
κ21 6= 1 and q 6= 0 and must be included to accurately model the effect of the anisotropy of elasticity.
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