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Role of impurities in the Lehmann effect of cholesteric liquid crystals: Towards an alternative model
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The Lehmann effect is the rotation of cholesteric droplets when they are submitted to a temperature gradient.
So far, this effect was only observed in the coexistence region between the cholesteric phase and its isotropic
liquid. This zone of coexistence is due to the presence in the LC of impurities. In this paper, we show that
the rotation velocity of the droplets does not depend on the choice of the impurity and on its concentration,
providing that the variations of the equilibrium twist and the rotational viscosity are taken into account. These
results were obtained by doping the cholesteric LC (a diluted mixture of 7CB and R811) with nonmesogenic
and mesogenic impurities. The nonmesogenic impurities used are the biphenyl, the hexachloroethane, and a
fluorinated polyether polymer. The mesogenic impurity is the LC I52. From these experiments we conclude
that the Lehmann effect is certainly not due to a chemical torque of the type described by Leslie, Akopyan,
and Zel’dovich. Finally, we propose alternative avenues that might be explored to understand the Lehmann
effect.
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I. INTRODUCTION

By doping a nematic phase with a small amount of a
chiral molecule, one obtains a cholesteric phase in which the
director �n rotates along a space direction called the helical
axis [1]. The cholesteric to isotropic phase transition is first
order so that there exists a coexistence region in which the
two phases coexist. In a pure LC such as 7CB (4-heptyl-4′-
cyanobiphenyl) doped with a small amount (typically 1% by
weight) of a chiral molecule such as R811 [R-(+)-octan-2-yl
4-(4-(hexyloxy)benzoyl) benzoate], the freezing range is usu-
ally very small (typically of the order of 0.02 ◦C). However,
it is possible to increase considerably the freezing range by
doping the cholesteric phase with an impurity. This makes
easier the observation of the cholesteric droplets coexisting
with their isotropic liquid. In 1900, Lehmann observed that
these droplets are not static but rotate constantly when they
are submitted to a temperature gradient [2]. This phenomenon
was then re-observed by one of us (P.O.) and A. Dequidt in
2008 [3,4] and more recently by other authors [5–7]. The
first explanation of this phenomenon was given by Leslie
in 1968 [8]. According to Leslie, a cholesteric phase sub-
jected to a temperature gradient �G experiences a torque of
expression:

��T M = ν�n × (�n × �G), (1)

where ν is the Leslie thermomechanical coefficient [9]. It
turns out that this torque exists and has been measured ex-
perimentally, first in a compensated cholesteric LC [10–12]
and then in diluted cholesteric LCs [13]. However, this torque
is too small by several orders of magnitude—with sometimes
the bad sign—to explain the Lehmann rotation of the droplets
[13–15]. The same conclusion was drawn for the Lehmann

*patrick.oswald@ens-lyon.fr

rotation of twisted nematic droplets observed recently in a
chromonic LC [16]. In that case, a similar explanation based
on the existence of a thermomechanical torque proportional
to the twist of the director field (the so-called Akopyan and
Zel’dovich torque [17,18]) was first proposed [16] but rapidly
invalidated after this torque was measured experimentally
[19,20].

The main conclusion of these previous works is that the
Leslie and (or) Akopyan and Zel’dovich thermomecanical
terms cannot explain the Lehmann rotation of the cholesteric
and nematic droplets (when the later are twisted). Another
explanation must thus be found. One of them was recently
suggested by Bono et al. [21] who observed a reversal of
the sense of rotation of the cholesteric droplets when the
sample, initially doped with an azobenzene, is irradiated with
UV light. To explain this spectacular effect, these authors
show the existence of two permanent crossed fluxes of the
cis and trans isomers of the azobenzene across the droplets
that are driven by the UV light. These fluxes of matter induce
a torque on the director that is formally equivalent to the
thermomechanical torque of Leslie. The existence of this
torque was first predicted by de Gennes in his book on liquid
crystals [22] and was then experimentally observed in chiral
Langmuir monolayers [23–25], in smectic C* free-standing
films [26], and in thin shells of cholesteric LC [27].

The question we are asking in this paper is thus the
following: is the Lehmann effect due to a chemical effect, or
more precisely due to a flux of impurities across the droplets?
To answer this question, we adopt a four-stage approach.
First we show that there must exist a flux of impurities
across the droplets (Sec. II). Then we analyze experimentally
whether this flux can explain the Lehmann effect (Sec. III).
Finally, we reanalyze the experiment of Bono et al. [21] in the
light of our results (Sec. IV) before concluding by proposing
new avenues of reflection to understand the Lehmann effect
(Sec. V).
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FIG. 1. (a) Typical phase diagram in the diluted regime. The
slope of the liquidus is m (here negative) and the slope of the solidus
is m/K; (b) droplet in the sample when the two phases coexist.

II. ON THE SPHERICAL SHAPE OF THE
CHOLESTERIC DROPLETS

There is much experimental evidence that the cholesteric
droplets are spherical when they coexist with their isotropic
liquid and their diameter is smaller than the sample thickness.
This result was obtained by various techniques including
direct imaging with a confocal microscope [5] and indirect
shape determination via the measurement of their optical
transmittance in the polarizing microscope [28]. This shape
is easily predicted when the sample is maintained at constant
temperature in the coexistence region between the two phases
because it is the shape that minimizes the surface energy (by
assuming a constant surface tension). However, the determi-
nation of the shape is more complex when the sample is
subjected to a temperature gradient. In this case, the droplet
must locally satisfy the Gibbs-Thomson relation between the
interface temperature T , the interface curvature κ , and the
impurity concentration at the interface in the isotropic liquid
CiI (with index i standing for “interface” and index I for
“isotropic”) [1]

T = Tc − γ Tc

�H
κ + mCiI . (2)

In this equation, Tc is the melting temperature of the pure
cholesteric phase, m is the slope of the liquidus (a straight
line at small concentration of impurities, see Fig. 1), �H is
the latent heat per unit volume, and γ is the surface tension
taken constant for simplicity. For completeness, we recall the
expression of κ for a surface of revolution obtained by rotating
a curve of equation x = x(s), z = z(s) in the xz plane about
the z axis (with s the arclength):

κ = 1

x

dz

ds
− dz

ds

d2x

ds2
+ dx

ds

d2z

ds2
, (3)

with the constraint
(

dx

ds

)2

+
(

dz

ds

)2

= 1. (4)

Note that in Eq. (2), we neglected the elastic corrections due
the deformations of the director field. These corrective terms,
of the form TcK̄

�HR2
C

, where 1/RC is the so-called molecular

orientation curvature at the interface [1,29] and K̄ is a Frank
constant, are indeed completely negligible as long as RC >

100 nm, which is the case in the banded droplets studied
experimentally in this paper (see the next section).

This differential equation gives the shape of the droplets
provided that the wetting conditions on the plates are speci-
fied. In practice, the plates are treated with a polymer so that
the cholesteric phase dewets. In this condition, this equation
can be solved if the concentration and the temperature at the
interface are known. The temperature field is easily found
if one assumes that the two phases have the same thermal
conductivity. In that case T = Tb + Gz, where z is the vertical
coordinate and Tb is the temperature of the bottom cold
plate (Fig. 1). For the concentration field, the situation is
much more complex because one must solve the diffusion
equations for the concentration fields in the two phases. This
is a difficult task that cannot be done simply, in particular
when the boundary of the droplet is not known (free-boundary
problem well known from people working in crystal growth).

However, a solution exists if one assumes that the impurity
concentration in the isotropic phase CI and that CN in the
nematic phase are constant, with CN = KCI , where K is the
partition coefficient of the impurity (see Fig. 1). Under this
assumption, the diffusion equations are automatically satisfied
as well as the law of conservation of the impurities at the
interface because of the absence of fluxes in the two phases.
As for the global conservation of impurity in the sample, it can
be satisfied by fixing the volume V of every droplet and their
number n per unit volume so that nV CN + (1 − nV )CI =
C̄, where C̄ is the average concentration of impurity in the
sample. Under these assumptions, it can be shown that the
shape of the droplets depends on their relative size with
respect to the typical length L = √

LcLT where Lc = γ /�H

is the capillary length and LT = Tc/G is the thermal length.
More precisely, the droplets have an almost spherical shape if
their radius R < L and a flat shape as shown in Fig. 2 when
R > L. In the later case, the height of the droplet saturates and
cannot exceed ∼2L. This flattening is due to the temperature
gradient and is similar to the one observed with a drop of water
on a substrate in the gravity field (in this case L is replaced by
the gravitational length).

It turns out that these predictions are not at all satisfied
experimentally. Indeed, let us estimate the length L. Accord-
ing to previous measurements, �H ≈ 106 J/m3 [30] and γ ≈
10−5N/m [31,32]. This gives an extremely small capillary
length Lc ≈ 10−11 m = 0.1 Å. In a typical experiment (see
below), G ≈ 2 104 K/m and Tc ≈ 300 K, which gives LT ≈
0.015 m. As a consequence, L ≈ 4 10−7 m = 0.4 μm. This
is very small, much smaller than the radius of the usual
droplets observed in the experiments on the Lehmann effect.
This strong disagreement shows that the surface tension is not
large enough to oppose the flattening effect of the temperature
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FIG. 2. Height and shape of the droplets as a function of their ra-
dius calculated by solving numerically the Gibbs-Thomson equation
at equilibrium. The lengths are given in unit of L = √

LcLT .

gradient. This result remains globally unchanged if the
anisotropy of the surface tension and the elastic effects are
taken into account, their only effect being to change a little
the shape of the droplets.

The direct consequence of this calculation is that the spher-
ical droplets observed experimentally are very different from
the droplets “at equilibrium” [33] that we have just calculated.
This shows that the droplets are dynamical in nature and result
from an out-of-equilibrium growth process in the coexistence
zone. This conclusion is reinforced by the observation that the
droplets have a finite lifetime and are rarely stable over more
than a few periods of revolution when they are polydisperse in
size. The situation is different when they are monodisperse as
in Fig. 4. In that case, they can survive much longer (tens of
minutes) before disappearing or merging with a neighbor. This
calculation also shows that, for the droplets observed in the
Lehmann effect, the surface tension effects can be neglected
in the Gibbs-Thomson relation, which becomes simply

T = Tc + mCiI = Tb + Gz, (5)

by assuming that the temperature gradient is the same every-
where (this is true if the two phases have the same thermal
conductivity). This relation immediately shows that CiI is a
linear function of z. Because CiN = KCiI , we deduce that
there must exist a gradient of impurity concentration inside
the droplets of the order of

∇CN ≈ K
G

m
. (6)

This result is obviously very approximate because a lin-
ear concentration profile of impurity does not satisfy the
anisotropic diffusion equation in the droplet. In addition, we
do not know how to calculate the concentration field in the
liquid which satisfies the diffusion equation and the law of
impurity conservation on the glass plates and the surface of
the droplet. This is nonetheless not very important for our
purpose because we only need the concentration field inside
the droplet. In the following, we will therefore just admit that
there exists a gradient of impurity concentration in the droplet
given by Eq. (6).

Doing this, we can now reproduce the same model as in
Ref. [3] by replacing the thermal Leslie torque by the chemical

Leslie torque,

��CM = νC �n × (�n × �∇CN ), (7)

where νC is a chemical Leslie coefficient. At small concen-
tration C� of chiral molecule (diluted cholesteric), νC and
the equilibrium twist q0 must be proportional to C� as these
two quantities vanish for symmetry reason at C� = 0. As a
consequence, νC must be proportional to q0 and can written in
the form νC = ν̄Cq0 where ν̄C only depends on the chemical
nature of the impurity that diffuses across the droplet. From
this modified model, we predict that the rotation velocity ω of
the droplets must be of the form

ω = −�
ν̄C

mK

q0G

γ1
, (8)

where γ1 is the rotational viscosity and � a dimensionless
positive function that—for a given texture of the droplets
(banded droplets in our experiments)—only depends on the
product q0R by denoting by R the radius of the droplets.
We recall that this model is based on the assumption that
the rotation of the droplets is due to the only rotation of
the director without flow, which was experimentally checked
[34,35].

An important prediction of this model is that the rotation
velocity of the droplets should not depend on the concentra-
tion of impurity, but only on the temperature gradient. This
is true provided that m is constant, which imposes to work
at small concentration of impurity, in the diluted regime.
However, the rotation velocity must depend on the choice of
the impurity because the physical constants ν̄C , K , and m, and
consequently the ratio ν̄C/(mK ), must depend on it. In the
next section we test this new version of the model.

III. EXPERIMENTAL VERIFICATION OF THE MODEL

To test these predictions, we doped a cholesteric LC with
four different impurities. The LC chosen was the 7CB (from
Frinton Laboratories, Inc., USA) and the chiral dopant was
the R811 (from Merck, Germany). The impurities chosen
were the biphenyl (from Sigma-Aldrich, Germany), the hex-
achoroethane (from Sigma-Aldrich, Germany), and a fluo-
rinated polyether polymer (Polyfox PF-656 from Omnova
Solutions, France), which are nonmesogenic, and the LC
I52 (4-ethyl-2- fluoro-4 -[2-(trans-4-pentylcyclohexyl)-ethyl]
biphenyl from Merck, Germany), which is mesogenic and has
a nematic phase between 24 and 103.4 ◦C [36]. The phase dia-
grams of 7CB doped with these impurities are shown in Fig. 3.
The corresponding values of the slope of the liquidus and the
partition coefficient are given in Table I. We emphasize that
the slope of the liquidus is negative for all the nonmesogenic
impurities and positive for the LC I52.

For the liquid polymer Polyfox PF-656, we were not able
to determine the exact phase diagram, because this impurity
is very little soluble in 7CB. In practice, we mixed 7CB with
5 wt.% of Polyfox. This mixture was then vigorously stirred
and centrifuged at 25 ◦C to separate the polyfox-rich phase
(of density close to 1.27) from the 7CB-rich phase (of density
close to 1). For this sample of 7CB saturated in Polyfox, we
measured Tsolidus = 39.69 ◦C and Tliquidus = 40.20 ◦C, which
gives K = 0.73 by taking Tc = 41.59 ◦C for the pure 7CB
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FIG. 3. Phase diagrams in the diluted regime of the LC
7CB doped with impurities I52, BP (biphenyl) and HCE (hexa-
cholorethane). The solidus (liquidus) lines are shown in dashed
(solid) line. For the pure 7CB we measured a freezing range of the
order of 0.01 ◦C. This could be due to the presence of traces of water
which is the main impurity in biphenyl LCs.

and by assuming that the solidus and liquidus lines are still
straight lines. By contrast, we could not determine the slope
of the liquidus because the real concentration of Polyfox is
unknown. This is the reason why the phase diagram with the
Polyfox is not shown in Fig. 3.

Each mixture of 7CB doped with its impurity was then
doped with the chiral dopant R811 (from Merck, Germany).
In all experiments, the concentration by weight of R811
was taken equal to 1.27%. The composition of the different
mixtures used in these experiments is given in Table II. We
emphasize that with this concentration of R811 the phase
diagrams shown in Fig. 3 are just shifted downwards by
∼ 0.76 ◦C without notable change of the slopes of the liquidus
and solidus lines. This is due to the fact that the partition
coefficient of R811 is close to 1 in biphenyl LCs [37]. For
each mixture, we additionally measured the cholesteric pitch
P (or equivalently the equilibrium twist q0 = 2π/P ) at the
solidus temperature by using the Cano-wedge method [1]. The
viscosity γ1 was also measured at the solidus temperature in
the nematic phase (before introduction of the R811) by using
the Freedericksz transition following the method described by
Wu and Wu [38]. The values of q0 and γ1 are reported in
Table II for all the samples used. We found that the equi-
librium twist was almost the same in all the samples at
the solidus temperature, of the order of 0.935 μm−1. By
contrast, the viscosity significantly changed from one sample
to another, from 0.021 Pa s in the sample doped with 6.17
wt.% of I52 to 0.0305 Pa s in the sample doped with 5 wt.%
of HCE.

TABLE I. Slope of the liquidus m and partition coefficient K of
the impurities used in this work.

Impurity Liquidus slope (K/wt%) Partition coefficient

BP −1.59 0.92
HCE −2.01 0.80
PF-656 – 0.73
I52 0.60 1.09

TABLE II. Mixtures used to measure the Lehmann effect and
their physical properties. The viscosity γ1 has been measured in
the nematic phase. In all the mixtures, the concentration of R811
was chosen equal to 1.27% by weight. In sample 7, the undissolved
PF-656 was separated from the LC by centrifugation after a strong
stirring at 25 ◦C.

Impurity Mixture no. Conc. (wt.%) q0 (106m−1) γ1 (Pa s)

Pure 7CB 1 0 0.934 0.0215
BP 2 0.997 0.934 0.0220
BP 3 1.99 0.935 0.0228
BP 4 2.99 0.937 0.0240
BP 5 3.97 0.938 0.0245
BP 6 4.75 0.939 0.0253
HCE 7 5.00 0.939 0.0305
PF-656 8 Saturated (25 ◦C) 0.934 0.0243
I52 9 6.17 0.935 0.0210

The measurements of the rotation velocity of the texture
of the cholesteric droplets were performed by using 20-μm-
thick samples. All the samples were sealed with the UV glue
NOA 81 (from Norland Products Inc., USA) to avoid that
the impurity evaporates from the edges. This is particularly
important with the biphenyl as was shown in Ref. [39] and
with the hexachloroethane, which evaporates even faster than
the biphenyl. The two glass plates limiting the samples were
covered with a thin layer of polymercaptan (typical thickness
50–100 nm) following the method described in Ref. [40]. With
this surface treatment, the cholesteric droplets systematically
dewet the surface which improves the reproducibility of the
measurements. In practice, the polymercaptan dissolves a
little in the LC and systematically decreases the liquidus and
solidus temperatures of about 0.3 and 0.6 ◦C, respectively. The
experimental setup used to impose the temperature gradient is
described in Ref. [3]. In all of our experiments the temperature
difference between the two ovens �T ranged between 5
and 10 ◦C. This gives a temperature gradient in the sample
of the order of 1700 �T (K/m) by taking a ratio between
the thermal conductivity of the glass and that of the LC
of the order of 7 [41]. All measurements were performed with
the banded droplets, in which the helical axis is perpendicular
to the temperature gradient (Fig. 4). These droplets are by far
the most numerous in the samples, even if one sometimes
observed other types of droplets as the ones with a low
contrast visible in Fig. 4. These droplets rotate faster than
the others, but we did not study them because they were only
observed in the samples doped with the polyfox and the HCE.
In the following, � is the period of rotation of the banded
droplets, R is their radius, and �T is the imposed temperature
difference between the two ovens.

The data for mixtures 2–6 with different concentrations of
biphenyl are shown in Fig. 5. In this figure, we plotted the
combination q0�T �/γ1 as a function of the dimensionless
product q0R. As we can see, all the curves fall on the same
master curve. This agrees with Eq. (8) of the chemical model
that predicts that this quantity must be an universal function
of q0R. Note that in this graph, we added the results obtained
with the pure cholesteric phase which surprisingly, also fall on
the same master curve. In this case, the main impurity is not
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FIG. 4. Two types of cholesteric droplets coexisting with the
isotropic liquid. All the droplets rotate clockwise when the temper-
ature gradient is directed towards the reader. Only the rotation of
the banded droplets has been studied. For information, the droplets
with the low contrast rotate typically 11 times faster than the banded
droplets in this sample of the mixture 7CB + 1.27%R811+ 5%PF-
256.

the biphenyl but the polymercaptan dissolved in the LC. This
suggests that the chemical nature of the impurity does not play
a dominant role in the Lehmann rotation.

To test this point, we performed similar measurements with
samples 7–9 doped this time with HCE, PF-656, and I52,

FIG. 5. Experimental data obtained with the samples doped with
the biphenyl. By way of comparison, the data obtained with the
pure cholesteric phase are also shown in this graph. In all these
experiments, the glass plates were treated with the polymercaptan.

FIG. 6. Comparison between the experimental data for samples
doped with different impurities. In all these experiments, the glass
plates were treated with the polymercaptan. Only the green stars
have been measured in a sample without polymercaptan. In this case,
the data were more dispersed and only the droplets that were freely
rotating were measured.

respectively. Again, we found that all the curves fall on the
same master curve (Fig. 6). This is indeed not expected from
the model because the factor ν̄C/(mK ) in Eq. (8) should
clearly depend on the impurity if the rotation was due to
a chemical Leslie torque. In addition, we observed that the
droplets rotate in the same direction in all the samples, re-
gardless of the sign of m. This would mean that the Leslie
coefficient has the same sign as m, which would be surprising.
One possibility suggested by one of the referees to explain
these observations would be that the rotation is dominated
by the flux of polymercaptan present in all the samples. To
test this assumption, we prepared a sample of pure cholesteric
without the polymercaptan layers and found that the droplets
were rotating with the same velocity as before. Points ob-
tained in this way are shown in Fig. 6 (green stars). This
proves that the polymercaptan is not directly responsible for
the rotation of the droplets. The same conclusion holds for the
chiral molecule R811 which acts also as an impurity, because
it has been shown previously that the rotation velocity of the
droplets is independent of the nature of the chiral molecule
provided that the pitch is the same [42].

Finally, we emphasize that the scaling proposed in Figs. 5
and 6 only works if γ1 is taken into account. This proves
that the rotation velocity of the banded droplets is inversely
proportional to γ1, which supports the idea that the rotation of
the droplets involves a rotation of the director without flow.
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FIG. 7. Geometry of the experiment.

From these results, we conclude that the Lehmann rotation
is certainly not driven by a chemical Leslie torque. This led us
to re-analyze the experiment of Bono et al. [21].

IV. ABOUT THE EXPERIMENT BY BONO ET AL. ON THE
ROTATION OF CHOLESTERIC DROPLETS DRIVEN

BY UV-LIGHT IRRADIATION

Recently, Bono et al. [21] investigated the Lehmann effect
in a cholesteric sample doped with an azobenzene molecule.
In their experiment, the sample was submitted to a constant
temperature gradient and was simultaneously illuminated by
a UV-beam of variable intensity. By doing this, they observed
that the rotation velocity of their droplets could vanish and
change sign when the intensity of the beam was increased.
This spectacular reversal of the sense of rotation of the
droplets was interpreted as due to the appearance of two
crossed fluxes of the trans and cis isomers of the azobenzene
across the droplets. According to the authors these two fluxes
generate two chemical Leslie torques which add to the usual
Lehmann torque due to the imposed temperature gradient.
This interpretation is tempting on condition that the tempera-
ture gradient in the sample is not significantly changed, which
is what the authors claimed after they roughly estimate the
temperature increase of their sample under UV (of the order
of 0.01 ◦C at the critical intensity at which the reversal is
observed, which is indeed completely negligible).

In this section, we reconsider this estimate by performing
a numerical simulation of the thermal problem in the experi-
mental conditions of Bono et al. To calculate the temperature
field in the sample, we need to solve the heat diffusion
equation in both the LC sample and the glass plates, with the
adequate boundary conditions. The geometry of the problem
is described in Fig. 7. In the glass plates, the heat diffusion
equation simply reads

div �j = 0 with �j = −κg

−→
grad T , (9)

where κg is the thermal conductivity of the glass. In the LC,
this equation reads

div �j − P = 0 with �j = −κLC

−→
grad T , (10)

where κLC is the thermal conductivity of the LC (supposed to
be constant and the same in the two phases for simplicity) and
P is a source of heat of the form

P = −dI

dz
(11)

by denoting by I (z, r ) the intensity in polar coordinates of
the UV beam. For a circular Gaussian beam of radius Rb, the
Lambert law gives

I (r, z) = I0 exp(−αz) exp

(
− r2

R2
b

)
. (12)

At the two interfaces between the glass plates and the LC the
flux of heat must be conserved, which imposes

�jg · �z = �jLC · �z at z = 0 and z = d. (13)

Finally, the temperatures are imposed on the outer faces of the
glass plates:

T (z = −e) = T1 and T (z = d + e) = T2 (14)

by denoting by e (d) the thickness of the glass plates (the
sample).

This set of equations was solved with Mathematica
by using a finite-element method. In the calculation, we
chose T1 = 65 ◦C, T2 = 70 ◦C (which gives a typical gradi-
ent of 0.016 ◦C/μm in the sample), e = 1 mm, d = 50 μm,
κg = 1 mW mm−1 K−1, κLC/κg = 1/7, Rb = 0.2 mm, α =
0.45 mm−1, and I0 = 50 mW/mm2 (typical values given in
Ref. [21]). The temperature profiles across the sample and the
glass plates are shown in Fig. 8 as a function of the distance to
the center of the beam. The bottom profile is the undisturbed
profile observed far from the beam. As expected it is linear
in both the glass plates and the LC with a slope ratio of 1/7
given by the ratio of the thermal conductivities. However,
this profile considerably changes inside the beam and shifts
towards the high temperatures because of the heating due to
the absorption of the UV light. Still more interesting, the local
temperature gradient can even change sign in the upper part
of the sample. This could explain the reversal of the sense of
rotation of the droplets present in this region. It is not clear
at this stage of the discussion to know whether these thermal
effects are responsible for the observations of Bono et al., but
our calculations show that the thermal effects are important in
their experiment and cannot be neglected.

V. CONCLUSION: TOWARD AN ALTERNATIVE MODEL

In conclusion, our analysis reveals that the spherical
droplets usually observed in the coexistence region are out
of equilibrium—in the sense that they do not result from the
simple minimization of their surface energy—when a temper-
ature gradient is applied. Indeed, the only way to satisfy the
Gibbs-thomson relation is to admit that there is a gradient of
impurity across the droplets since the capillary term becomes
negligible as long as their radius exceeds a few micrometers.
This suggests that the spherical shape of the droplets is a
growth shape rather than an equilibrium shape.

Based on this observation, we proposed that this gradient
of impurity generates a flux of impurity responsible for a
chemical Leslie torque on the director and we reformulated
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FIG. 8. (a) Temperature profiles numerically calculated across
the LC sample and the glass plates at different distances from the
center of the UV beam; (b) Zoom in the LC sample. From top to
bottom r = 0, 0.1, 0.15, 0.2, 0.3, 0.5, and 2 mm. The two vertical
bars mark the limits of the LC sample.

our old model of the Lehmann effect by replacing the thermal
Leslie torque by the chemical Leslie torque. The surprising
result of our experiments is that this torque—if it exists—is
independent of the nature of the impurity. In addition, its sign
should not depend on the sign of the slope of the liquidus,
and thus on the sense in which the impurity diffuses. These
two results are very suspicious and suggest that the Leslie
chemical effect is not directly responsible for the Lehmann
effect. The same conclusion could apply to the work of Bono
et al., in which the thermal effects are clearly underestimated.

However, we believe that the Lehmann effect is closely
linked to the problem of the diffusion of the impurity across
the droplets when a temperature gradient is applied. Indeed,
this flux, as well as the Lehmann effect, only appears when
the droplets are prepared in the coexistence region with their
own isotropic liquid. This was recognized by several authors
[7,16] who prepared dispersions of cholesteric droplets in
immiscible—or very slightly miscible liquids such as water
or glycerol—and never observed the Lehmann effect when
the temperature was lower than the transition temperature of
the LC in the droplets. In this case, the cholesteric phase is
saturated with the liquid (for water, for instance, the saturation
concentration is of the order of 0.6 wt% [43]) and the concen-
tration gradient disappears. The shape of the droplet then just
results from the minimization of the surface energy and the
spherical shape is recovered (if one neglects the temperature
variation of the surface tension and the flattening due to the

v

G

FIG. 9. Possible hydrodynamic flow in the presence of a droplet.
The droplet keeps its stationary shape if the cholesteric phase melts
at the top of the droplet and grows at the bottom. Because of this
vertical motion the chiral internal texture of the droplet must rotate.
Note that this flow is undetectable with the photobleaching technique
used in Refs. [34,35] that is only sensitive to the flow in the plane of
the sample.

gravity and the difference in density between the liquid and
the LC). Note that in that case the surface tension is much
larger than at the interface with the isotropic phase of the
LC (of the order of 0.1 N/m [44] instead of the 10−5 N/m
reported before), which favors the spherical shape. This dif-
ference of behavior between the droplets in the coexistence
region and the droplets in an emulsion argues in favor of an
important role played by the diffusion of impurities in the
Lehmann effect.

For this reason, we tried to deepen our analysis in this
direction by considering which other consequence the
presence of a gradient of impurity implies. A new clue is
given by applying the law of impurity conservation at the
surface of the droplet:

CIi (1 − K )�v · �ν = −DI ( �∇C)I · �ν + DCh( �∇C)Ch · �ν, (15)

where �ν denotes the unit vector normal to the interface and
directed from the cholesteric towards the isotropic liquid and
�v the growth velocity of the cholesteric phase. This equation
shows that the quantity of solute which is rejected at the inter-
face per unit time and surface is balanced by the diffusion cur-
rents in the two phases. If there is no flow in the sample and the
droplet has a stationary shape as in Fig. 4, we have necessarily
�v = 0 which means that the two fluxes must equilibrate. This
seems impossible to satisfy except if there is a vertical flow
which drags at velocity v̄ the droplet in the opposite direction
as shown schematically in Fig. 9. To estimate this velocity let
us apply the previous equation at the top of the droplet. If this
point is close to the top glass plate, one should have

DI ( �∇C)I · �ν ≈ 0, (16)

because there is no flux of impurity across the glass plate. By
contrast, one has

DCh( �∇C)Ch · �ν ∼ KDCh
G

m
, (17)

according to Eq. (6), which gives

v̄ = −v ∼ −KDCh
G

mCIi (1 − K )
, (18)

where CIi must be of the order of the average concentration
C̄ of impurity. This vertical motion of the droplet leads to an
apparent rotation of its internal texture at angular velocity

ω ∼ −qv̄ = qKDCh
G

mC̄(1 − K )
, (19)
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where q is the twist of the droplet in the vertical direction
(proportional to q0). This formula is interesting in many
respects.

First, it predicts the good sense of rotation of the droplet
whatever the impurity chosen. Indeed, the experiment shows
that in all cases ω < 0 when q0 > 0. This is the case for
nonmesogen impurities for which m < 0 and K < 1 but also
for the nematogen impurity I52 for which m > 0 and K > 1;

Second, it predicts that ω is proportional to G, which is
observed in all experiments.

Third, it predicts that ω is proportional to the effective twist
in the z direction. This is compatible with experiments that
show that the CC (for concentric-circles) droplets in which the
helix is parallel to the temperature gradient rotate much faster
than the banded droplets in which the twist is mainly in the di-
rection perpendicular to the gradient. More precisely this for-
mula predicts that the more tilted the helical axis with respect
to the temperature gradient, the smaller must be the rotation
velocity. This tendency was indeed observed experimentally
by the authors of Ref. [5]. It must be emphasized here that
the banded droplets never stop rotating in spite of the fact that
the helical axis is perpendicular to the temperature gradient
in the center of the droplets. The reason is that these droplets
always exhibit double twist near their surfaces, as shown both
theoretically and experimentally by confocal microscopy in
Ref. [6]. This result was confirmed numerically in Ref. [28].
This particular structure induces a rotation of the edge of
the droplets that extends to the whole texture because of the
nematic elasticity. For this reason, the molecules must also
rotate—and not only translate—inside these droplets. This
molecular rotation induces a strong energy dissipation very
similar to the one described in the standard model based on
the Leslie torque [3,4]. This could qualitatively explain why
the rotation velocity of the banded droplets depends on γ1 and
strongly decreases when their diameter increases. By contrast,
the rotation velocity of the CC droplets must be independent
of their diameter in this model, since no molecular rotation
is necessary to observe the texture rotation. This was indeed
observed by Ito et al. [6] in their experiments.

Fourth, it predicts the good order of magnitude for the
rotation velocity of the droplets. To check this point, we can
rewrite Eq. (19) in the form

�q�T = 2πδT

DCha
, (20)

where �T is the imposed temperature difference (with G =
a�T and a = 1.7 × 10−3 μm−1) and δT = mC̄(K − 1)/K
is the freezing range. For CC droplet for which q = q0,
experiments show that their velocity is the same as the one
measured for the banded droplet at very small radius [46]. By
using this remark and the results of Fig. 5, we deduce that for
CC droplets �q0�T ≈ 45 K s μm−1 by taking γ1 ≈ 0.03 Pa s
while the previous formula predicts �q0�T ≈ 70 K s μm−1

by taking δT = 1 ◦C and Dchol = 50 μm2s−1 (see Table III).
However, Eq. (20) suggests that the period of rotation

increases when the freezing range increases, which is not
observed. It thus becomes obvious that this oversimplified
version of the model of melting-recrystallization is incomplete
and must be improved.

TABLE III. Impurity diffusion coefficient perpendicular to the
director measured in the nematic phase at the solidus tempera-
ture. The measurement was performed in directional melting with
homeotropic samples (for more details, see Ref. [45]).

Impurity D⊥ (μm2/s)

BP 77
HCE 73
PF-656 30
I52 61

At this point we can mention that we have neglected the
thermodiffusion (or Soret effect [47]) in our discussion. This
phenomenon is rarely taken into account in crystal growth,
but it could be important in liquid crystals, in particular inside
the droplets where a spatial variation of the quadrupolar order
parameter is imposed by the temperature gradient. This was
evidenced in a recent experiment showing the spontaneous
migration of a fluorescent dye in a zone heated by a laser fo-
cused on the sample [48]. In this experiment the concentration
and temperature gradients are of the same sign at equilibrium,
which means that the thermodiffusion coefficient of the dye is
negative. This is expected if the dye prefers the isotropic liquid
as the nonmesogenic impurities used in this study for which
m < 0 and K < 1. Conversely, we could expect a positive
thermodiffusion coefficient for the I52 impurity for which
m > 0 and K > 1. If we are right, we thus predict gradients
of impurity concentration which are of the same sign as the
temperature gradient for the nonmesogenic impurities (BP,
HCE, polyfox, and polymercaptan) and of opposite signs for
the I52. This is exactly the contrary of what we need to satisfy
the Gibbs-Thomson equation. We thus conclude that the Soret
effect is certainly negligible in our experiments since it should
tend to flatten the droplets which is not observed.

In the future, it would be interesting to reconsider the
model proposed in Ref. [49] and to generalize it by taking
into account the mechanism of melting-recrystallisation pro-
posed in this paper. This could be interesting because this
model predicts that the period of rotation of the droplets
is proportional to γ1 and does not involve the thermal and
chemical Leslie torques. This would require to solve first
the problem of the nucleation and growth of the droplets in
the presence of hydrodynamic flows, a nice challenge for
theorists of crystal growth. This would be fundamental to
understand the spherical shape of the droplets. From this
resolution, the concentration field could be deduced and the
rotation velocity calculated after correction of the vertical
motion of the droplet. It would also be important to detect
experimentally these vertical flows, for instance by improving
the spatial resolution of the photobleaching experiments of
Refs. [34,35], and to measure the variations of the elastic
constants at the solidus temperature as a function of the
concentration impurity, an essential ingredient in the model
of Ref. [49].

The case of the Lehmann rotation of cholesteric droplets
dispersed in the liquid polymer Polyfox PF-656—in which the
LC is partly miscible—is also extremely interesting in light of
our discussion [7]. Indeed, the surface tension between the
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Polyfox and the LC must be much higher than in the present
experiments because the chemical compositions of the two
phases are very different. For this reason, the spherical shape
of the droplets is less surprising and should simply result
from the minimization of the surface energy of the droplets.
However, the surface tension could vary significantly with
temperature because of the partial miscibility between the LC
and the Polyfox. In this case, one could imagine a strong
Marangoni effect and a coupling between the induced flow
and the cholesteric structure of the droplet similar to the one
described recently by Yamamoto and Sano [50,51].

In conclusion, the Lehmann effect is far from being re-
solved, and could have different origins depending on the
system considered. Among them are the thermal and chem-
ical Leslie, Akopyan, and Zel’dovich torques, the melting-
recrystallization process and the Marangoni effect. In our

opinion, the thermal and chemical torques can always be
neglected, except, perhaps in the experiment of Bono et al.
[21], where a strong flux of azo dyes is generated under UV
illumination. However, we favor the melting-recrystallization
process in the classical Lehmann effect observed in the coex-
istence region between the cholesteric phase and its isotropic
liquid and a Marangoni effect in the case of the cholesteric
emulsions of Yoshioka and Araoka [7].
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