Fréedericksz transition under electric and rotating magnetic field: application to nematics with negative dielectric and magnetic anisotropies

P. Oswald, G. Poy & F. Vittoz

To cite this article: P. Oswald, G. Poy & F. Vittoz (2017): Fréedericksz transition under electric and rotating magnetic field: application to nematics with negative dielectric and magnetic anisotropies, Liquid Crystals, DOI: 10.1080/02678292.2016.1272722

To link to this article: http://dx.doi.org/10.1080/02678292.2016.1272722

Published online: 02 Feb 2017.

Article views: 46

View related articles

View Crossmark data
Fréedericksz transition under electric and rotating magnetic field: application to nematics with negative dielectric and magnetic anisotropies

P. Oswald, G. Poy and F. Vittoz
Laboratoire de Physique, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Lyon, France

ABSTRACT
We study the action of a rotating magnetic field on the Fréedericksz instability under electric field of a homeotropic nematic sample sandwiched between two parallel electrodes. The liquid crystal (LC) is of negative dielectric and magnetic anisotropies and the magnetic field is parallel to the electrodes used to apply the electric field. We show that the sample destabilises above a critical voltage \( V_c \) that depends on the magnetic field \( B \) and its angular rotation velocity \( \omega \). The relation \( V_c(B, \omega) \) is calculated analytically in the synchronous regime, where the director rotates at the same angular velocity as the magnetic field. These predictions are compared to the experiment performed with the LC CCN-37. From this experiment, the values of the bend constant \( K_3 \), of the rotational viscosity \( \gamma_1 \) and of the magnetic anisotropy \( \chi_a \) are deduced.

1. Introduction
The Fréedericksz transition [1] is a bifurcation between two nematic states: a uniform state in which the director is oriented in a single direction and a distorted state in which the director field is distorted upon application of a strong enough magnetic or electric field. This transition is important in practice because the fabrication of the liquid crystal (LC) displays [2,3] used in our daily life is based on it. This transition is also very useful for measuring the three elastic constants \( K_i \) \((i = 1 - 3)\) of the nematic phase. The most usual technique described in all textbooks on LC consists of submitting a planar (or homeotropic) nematic sample to a magnetic (or electric) field parallel or perpendicular to the plates limiting the sample. Measuring the critical electric (or magnetic) field yields the ratios \( K_i/\epsilon_a \) (or \( K_i/\chi_a \)), where \( K_i \) depends on the geometry chosen [4]. The elastic constant can then be calculated, provided the dielectric (or magnetic) anisotropy \( \epsilon_a \) (or \( \chi_a \)) is known. In practice, the dielectric constants – and consequently their anisotropy – are easy to measure with a LCR meter. By contrast, the magnetic anisotropy is more difficult to measure because the materials are diamagnetic (with very small magnetic susceptibilities). In practice, several methods have been used to measure \( \chi_a \). Some of them, as the Faraday-Curie method [5,6], the Gouy balance method [7] or those using a superconducting quantum interference device [8], are indirect and consist in...
measuring $x_\perp$ (if $x_\perp>0$) or $x_\parallel$ (if $x_\perp<0$) in a bulk nematic sample and $\tilde{x} = (x_\parallel + 2x_\perp)/3$ – a quantity which does not depend on temperature because the material is diamagnetic – in the isotropic liquid. From these two measurements, $x_\parallel$ can be deduced. In another technique, a bulk nematic sample is subjected to a rotating magnetic field $B$. Measuring the maximum torque that the field exerts on the sample directly gives the magnetic anisotropy. But this method works only with materials of positive magnetic anisotropy [9]. Another method, simpler to implement, is to impose a strong magnetic field that stabilises the initial director configuration in an oriented sample. Measuring the increase of the critical voltage necessary to destabilise the structure gives the ratio $x_\parallel/\varepsilon_a$ from which $\varepsilon_a$ can be deduced knowing $x_\parallel$. This method was successfully applied by Schad et al. [10] to materials with positive or negative $x_\parallel$, but positive $\varepsilon_a$. On the other hand, this method is not easily applicable to the materials with negative dielectric and magnetic anisotropies which are considered in this article. Indeed, the only possibility would be to use a homeotropic sample with the two fields perpendicular to the plates or a planar sample with the two fields parallel to the anchoring direction. In these two configurations, the two fields are destabilising. The ratio $x_\parallel/\varepsilon_a$ could be obtained by measuring the decrease of the critical electric field when the magnetic field is smaller than the critical magnetic field necessary to destabilise the structure at zero electric field. The difficulty here is to impose, either a magnetic field perpendicular to the sample (we do not have the appropriate electromagnet) or an electric field parallel to the sample.

For this reason, we looked for another technique using a Halbach array. With this permanent magnet, a very homogeneous magnetic field $B$ can be applied in the plane of the sample. In this article, we show theoretically and experimentally that the onset of instability under electric field of a homeotropic sample increases when it is submitted to a magnetic field parallel to the plates and rotating at angular velocity $\omega$. By measuring the critical voltage $V_c(\omega)$ as a function of $\omega$, or equivalently, the critical rotation velocity $\omega_c(V)$ above which the sample restabilises when it is subjected to a voltage $V$ larger than $V_F$ (the Fréederickz critical voltage at $B = 0$), we show that it is possible to measure the ratios $K_3/\varepsilon_a$, $\varepsilon_a/x_\parallel$ and $y_1/x_\parallel$, where $y_1$ is the rotational viscosity. This technique is applied to the LC CCN-37 which has dielectric and magnetic anisotropies both negative [11].

2. Theoretical analysis

We consider a nematic sample sandwiched between two parallel electrodes at $z = 0$ and $z = d$ treated for strong homeotropic anchoring. The director orientation is given by the zenith angle $\theta$ and the azimuthal angle $\phi$. The electric field $\vec{E}$ is parallel to the $z$-axis and the magnetic field $\vec{B}$ is parallel to the $xy$-plane and rotates with the angular velocity $\omega$ (Figure 1). For simplicity, we present here the calculation in isotropic elasticity ($K = K_1 = K_2 = K_3$) by further assuming that the electric field is constant: $E = V/d$, where $V$ is the applied voltage. The complete calculation in anisotropic elasticity and taking into account the electric field variation within the nematic layer is given in the Appendix. By neglecting the backflow effect (this approximation is justified experimentally, see section 4), the torque equations read

$$\gamma_1 \frac{\partial \theta}{\partial t} = K \frac{\partial^2 \theta}{\partial z^2} - K \sin \theta \cos \theta \left( \frac{\partial \phi}{\partial z} \right)^2 - \varepsilon_0 \varepsilon_a E^2 \sin \theta \cos \phi + \frac{x_\parallel B^2}{\mu_0} \sin \theta \cos \theta \cos^2(\phi - \omega t),$$

(1)

![Figure 1](image-url). Definition of angles $\theta$ and $\phi$ and of the phase lag $\alpha$. 
\[
\frac{\partial \varphi}{\partial t} = K \frac{\partial^2 \varphi}{\partial z^2} + K \cot(\theta) \frac{\partial \varphi}{\partial z} \left( \frac{\partial \theta}{\partial z} \right) - \frac{\chi_a B^2}{\mu_0} \sin(\varphi - \omega t) \cos(\varphi - \omega t), \tag{2}
\]

where \(\varepsilon_0\) is the vacuum permittivity. We look for a stationary solution of the form \(\varphi(t) = \omega t - \alpha\) with \(\alpha\) a constant and \(\theta(z)\) only function of \(z\). After substitution into Equation (2), one obtains the phase lag \(\alpha = \frac{\pi}{2} + \delta\) between the magnetic field and the projection of the director onto the \(xy\)-plane (Figure 1) with

\[
\delta = \frac{1}{2} \arcsin \left( \frac{\omega}{\omega_*} \right), \tag{3}
\]

and

\[
\omega_* = -\frac{\chi_a B^2}{2\gamma_1 \mu_0}. \tag{4}
\]

Equation (3) shows that this solution exists only when \(\omega < \omega_*\). This defines the limit between the synchronous regime and the asynchronous regime [9,12]. In the following, we restrict our analysis to the synchronous regime (\(\omega \leq \omega_*\)). Another important point is that \(\alpha\) does not depend on the applied voltage, providing that the voltage is larger than \(V_F\).

The angle \(\theta(z)\) is obtained by replacing \(\varphi\) by its expression into Equation (2). This gives

\[
\frac{d^2 \theta}{dz^2} = -\left[ \frac{1}{\xi_e^2} - 1 - \frac{1 - \left( \frac{\omega}{\omega_*} \right)^2}{2\xi_m^2} \right] \sin \theta \cos \theta, \tag{5}
\]

where \(\xi_e\) and \(\xi_m\) are the electric and magnetic coherence lengths, respectively [4]:

\[
\xi_e^2 = \frac{-K}{\varepsilon_0 \varepsilon_a E^2} \quad \text{and} \quad \xi_m^2 = \frac{-\mu_0 K}{\chi_a B^2}. \tag{6}
\]

By setting \(Z = \pi z/d\), this equation can be rewritten in the form

\[
\frac{d^2 \theta}{dZ^2} = -\left( \frac{V^2 - V_F^2}{V_F^2} \right) \sin \theta \cos \theta, \tag{7}
\]

where \(V_F = \pi \sqrt{\frac{K}{-\varepsilon_e}}\) is the usual critical voltage at zero magnetic field (or under a static magnetic field in this experiment) and

\[
V_F^2 = V_0^2 \left[ 1 - \sqrt{1 - \left( \frac{\omega}{\omega_*} \right)^2} \right] \quad \text{with} \quad V_0 = \sqrt{\frac{\chi_a}{2\varepsilon_a} Bdc} \tag{8}
\]

and \(c\) the velocity of light. Integrating Equation (5) gives

\[
Z \sqrt{\frac{V^2 - V_F^2}{V_F^2}} = \int_0^{\theta(Z)} \frac{d\theta'}{\sqrt{\sin^2 \theta_m - \sin^2 \theta}} = \arcsin \left( \frac{\sin(\theta(Z)/m \gamma)}{\sin \theta_m} \right), \quad \text{with} \quad \theta_m = \arcsin \left( \frac{\theta(Z)}{\sin \theta_m} \right),
\]

where \(\theta_m\) denotes the maximum tilt angle in the middle of the cell (at \(Z = \pi/2\) and \(\sin \theta' = \sin \theta_m \sin \psi\). From this equation, the profile \(\theta(Z)\) can be calculated numerically. More important, this equation shows that at \(Z = \pi/2\), the angle \(\theta_m\) satisfies the equation

\[
\frac{\pi}{2} \sqrt{\frac{V^2 - V_F^2}{V_F^2}} = \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - \sin^2 \theta_m \sin^2 \psi}} = K(\sin \theta_m), \tag{10}
\]

where \(K(x)\) is the complete elliptic integral of the first kind. Because \(K(x) > \frac{\pi}{2}\) \(\forall x\), we deduce that the homeotropic sample destabilises when \(V^2 - V_F^2 \geq 1\). This defines the onset of instability \(V_c(\omega)\) which depends on the angular velocity of the magnetic field:

\[
\frac{V_c(\omega)}{V_F} = \sqrt{\frac{1 + V_0^2}{V_F^2}} \left[ 1 - \sqrt{1 - \left( \frac{\omega}{\omega_*} \right)^2} \right], \tag{11}
\]

where \(V_0^2 \propto B^2\) is given in Equation (8), or equivalently, the critical velocity \(\omega_c(V)\) above which the sample restabilises when it is submitted to a voltage \(V \geq V_F\):

\[
\omega_c(V) = \sqrt{1 - \left( 1 - \frac{V^2 - V_F^2}{V_0^2} \right)^2} \tag{12}
\]

Note that these equations are only valid in the synchronous regime to which we restrict our analysis. A schematic phase diagram is shown in Figure 2. In the Appendix, we show that this equation remains unchanged in the general case on condition to take \(K = K_3\).

This analysis shows that the onset of the Fréedericksz transition in the bend geometry (homeotropic sample) increases under the action of a rotating magnetic field in the synchronous regime. This effect is original because the onset remains unchanged when the field is static, which is not the case in the usual experiments performed under crossed fields as in [10].
From the measurement of $V_c(\omega)$ (or equivalently $\omega_c(V)$ when $V > V_F$), the ratios $K_3/\varepsilon_a$ and $\varepsilon_a/\chi_a$ can be deduced. In addition, the measurement of the phase lag $\alpha(\omega)$ gives the ratio $\gamma_1/\chi_a$ according to Equations (3) and (4). In the following, we apply these results to the measurement of $K_3$, $\chi_a$ and $\gamma_1$ in the LC CCN-37.

### 3. Material and experimental set-up

The LC chosen is CCN-37 (or 4α,4α-propyloxy-1α,1α-bicyclohexyl-4β-carbonitrile from Nematel GmbH & Co. KG, Mainz, Germany). This LC has a nematic phase between 22.5°C and 54.1°C [11]. Its dielectric anisotropy – that we and Merck have previously measured [11,14] – is negative and well fitted by formula $\varepsilon_a = -7.0963 + 0.06534\delta T + 3.8563/(0.26291 - \delta T)^{0.17576}$, where $\delta T = T - T_{NI}$ is given in kelvin (where $T_{NI}$ is the nematic-isotropic transition temperature). The sample is prepared between two parallel indium tin oxide electrodes treated for homeotropic anchoring with the Nissan polyimide 0626. Nylon wires are used as a spacer and the sample thickness is measured to within $\pm 0.1$ µm with a spectrometer. The sample is placed in an oven regulated to within $\pm 0.02$°C, thanks to an ATNE controller. The rotating magnetic field is imposed by placing the oven and the sample inside a Halbach magnet which can rotate about its revolution axis and produces a horizontal 1 T magnetic field in its centre. The experimental set-up, already described in detail in [15] and [13], was modified by one of us (F.V.) in order that the magnet and its drive motor are mechanically decoupled from the oven and the microscope used to observe the sample. In this way, no vibration is now transmitted from the motor to the sample. A schematic representation of our set-up is shown in Figure 3 where two photodiodes are visible. The first one PD1 gives a signal $I_1$ of frequency $2\omega$, the phase of which $\Phi_1$ gives the orientation of the magnetic field. The other PD2 gives a signal $I_2$ of frequency $4\omega$, the phase of which $\Phi_2$ directly gives the orientation of the director projector $\vec{n}_1$ in the horizontal plane (knowing that the director remains everywhere in the same vertical plane in the synchronous regime). Finally, the sample can be directly observed through the microscope which is useful to check the quality of the homeotropic anchoring. A three-dimensional PDF view of the complete set-up is shown in the supplemental material.

### 4. Experimental results

All experiments were performed with a sample of thickness $d = 70.5$ µm and an alternating current voltage of frequency 1 kHz. We first measured the critical voltage $V_F$ above which the sample destabilises when the magnet does not rotate. In this case, the only action of the magnetic field is to lift the degeneracy about the tilt direction of the director in the sample thickness above $V_F$. The measurements were performed by directly observing the sample between crossed polarisers at 45° to the magnetic field, while simultaneously
measuring the cell capacitance with a HP 4284A LCR meter. Both methods gave the same results. From these measurements, \( K_3 \) was obtained by using the formula for \( \varepsilon_a \) given earlier. These measurements are in good agreement with previous ones performed in a much thinner sample (see [14]) and with Merck data [11]. All of our data (including those of [14]) are well fitted with formula

\[
K_3 (\text{pN}) = 3.18 - 0.243 \delta T - 79.4/(3.5 - \delta T)^3
\]

as can be seen in Figure 4. We then measured the phase lag \( \alpha \) (or equivalently \( \delta = \alpha - \pi/2 \)) as a function of the rotation velocity \( \omega \) by using the same procedure as in [13,15]. First, we checked that at each temperature the curves \( \delta(\omega) \) obtained for different values of \( V>V_F \) were superposable (Figure 5), in agreement with our model (see Equation (3)). This shows that the backflow effect is negligible in this experiment (at least when optical measurements are done in the middle of the sample) and that the measured rotational viscosity is very close to \( \gamma_1 \). The same conclusion was already reached in our previous experiments conducted with nematic LCs of positive magnetic anisotropy [13]. Second, we systematically measured the slope at the origin \( m \) of the curve \( \delta(\omega) \) as a function temperature. From this measurement, the ratio \( \gamma_1/(-\chi_a) \) was calculated knowing that \( \gamma_1/(-\chi_a) = mB^2/\mu_0 \), according to Equations (3) and (4) (Figure 6). Finally, we measured the critical velocity \( \omega_c \) above which the instability disappears when a voltage \( V> V_F \) is applied. This was done by measuring the average value of the transmitted intensity through the sample between crossed polarisers as a function of \( \omega \). Typical curves are shown in Figure 7. They show that the mean intensity decreases linearily with the rotation velocity and vanishes above a critical velocity \( \omega_c \), meaning that the sample is again homeotropic. It can be noted that the transition is continuous, as predicted by the theory, but slightly smoothed near \( \omega_c \). This could be due to the fact that the magnetic field is certainly not exactly parallel to the

**Figure 4.** (colour online) Bend elastic constant \( K_3 \) as a function of temperature and its fit (solid line) with the formula given in the text.

**Figure 5.** (colour online) Phase lag \( \delta = \alpha - \pi/2 \) as a function of the rotation velocity \( \omega \) measured for different values of the applied voltage. \( \delta T = -4^\circ C \) and \( V_F = 0.99 \text{ Vrms} \).

**Figure 6.** (colour online) Ratio \( \gamma_1/(-\chi_a) \) as a function of temperature. The solid line is just a guide for the eye.

**Figure 7.** (colour online) Mean intensity between crossed polarisers as a function of the rotation velocity \( \omega \). Each curve was measured for a different value of the ratio \( V/V_F, \delta T = -4^\circ C \).
plane of the sample. Finally, a typical curve $\omega_c^2/\omega_0^2$ (with $\omega_0 = 1/(2m)$) as a function of $V^2 - V_F^2$ is shown in Figure 8 together with its best fit to Equation (12) where the only adjustable parameter is $V_0$. Again the agreement between theory and experiment is good. From this fit, $V_0$ and, thus, the ratio $\epsilon_a/\chi_a$ can be obtained by using Equation (8). The magnetic anisotropy $\chi_a$ was then calculated since $\epsilon_a$ is known. The same procedure was repeated at other temperatures to obtain the curve $\chi_a(\delta T)$ shown in Figure 9. Finally, the rotational viscosity $\gamma_1$ was calculated from the data in Figure 6 by using our values of $\chi_a$. The result is shown in Figure 10. It must be noted here that our values of $\chi_a$ are rather different from those given by Merck [11] as can be seen in Figure 9. The origin of this disagreement is unknown. On the other hand, the value of $\gamma_1$ that we find at the transition, $\gamma_1(T_{NI}) = 0.0079$ Pa s, agrees well with the value previously measured by using the Fréedericksz transition in the bend geometry after correction of the backflow effect: $\gamma_1(T_{NI}) = 0.0074$ Pa [14]. This agreement confirms that our value of the magnetic anisotropy at the transition is actually correct.

5. Conclusion

We have shown that a rotating magnetic field parallel to the electrodes increases the Fréedericksz critical voltage in the bend geometry when the LC is of negative dielectric and magnetic anisotropies. This phenomenon can be used to measure the ratio $\epsilon_a/\chi_a$ and generalises the classical method of the Fréedericksz transition under crossed fields used so far to measure this ratio when one of the fields (usually the magnetic one) is stabilising while the other (usually the electric one) is destabilising. The originality here is that the magnetic field is 'neutral' at rest and becomes only stabilising when it is rotating. In our study, the calculations – and the measurements with the LC CCN-37 – were performed in the synchronous regime in which the director rotates at the same velocity as the magnetic field. Nevertheless, this phenomenon should also exist in the asynchronous regime, but the calculations become much more complicated and can no longer be made analytically. We must also note that our calculations in the synchronous regime are much simplified because they neglect the backflow effect, necessarily present in this geometry [9]. On the other hand, this effect seems negligible at the centre of the sample where all of our measurements were performed. In the future, it would interesting to test this hypothesis by numerically solving the complete equations of the nematodynamics as in the paper of Svenšek and Žumer [16] dealing with backflow effect in nematic LCs confined to a long capillary and subject to a magnetic field.
**Acknowledgement**

We would like to thank A. Dequidt for his comments and his careful rereading of the article.

**Disclosure statement**

No potential conflict of interest was reported by the authors.

**References**


**Appendix. Exact calculation of the phase diagram without backflow**

In this Appendix, we show that Equations (3) and (4) that give the phase lag α and Equations (11) and (12) that define the transition line in the parameter plane (ω, V) remain unchanged in anisotropic elasticity (on condition to take K = K′) when the effects of non-uniformity of the electric field are taken into account.

In our experiment, the frequency of the electric field is much larger than the charge relaxation frequency of the LC, meaning that we are in the dielectric regime. In this regime, the free energy – including the magnetic and electric contributions – reads [17] by assuming from now on that the director field is not twisted (∂φ/∂z = 0):

\[
F[\pi, t] = \int_0^1 \frac{K_3}{2} (1 + \kappa \sin^2 \theta) \left( \frac{\partial \theta}{\partial z} \right)^2 - \frac{\kappa B^2}{2 \mu_0} \sin^2 \theta \cos^2 (\varphi - \omega t) \right)
\]

\[
+ \frac{1}{2} \mu_0 \mu_3 \beta \frac{\partial \gamma}{\partial \theta} \frac{\partial \gamma}{\partial \phi}
\]

where V = V(d) − V(0) is the applied voltage, κ = K′/K′′−1, γ = −ω1/μ1 and Dz (constant) is the vertical component of the dielectric displacement vector given by

\[
Dz = \frac{-\mu_0 \epsilon_0 V}{\int_0^1 \frac{\partial \gamma}{\partial \theta} \frac{\partial \gamma}{\partial \phi}}
\]

The torque equations follow by writing that

\[
\psi_1 \frac{\partial \varphi}{\partial t} = -\frac{1}{\sin^2 \theta} \frac{\partial F}{\partial \varphi}
\]

\[
\psi_1 \frac{\partial \theta}{\partial t} = -\frac{\partial F}{\partial \theta}
\]

which gives

\[
\psi_1 \frac{\partial \varphi}{\partial t} = -\frac{\kappa B^2}{\mu_0} \cos(\varphi - \omega t) \sin(\varphi - \omega t)
\]

\[
\psi_1 \frac{\partial \theta}{\partial t} = K_3 \psi_1 \frac{\partial \psi_1}{\partial \theta} \left(1 + \kappa \sin^2 \theta\right) + K_3 \psi_1 \cos \theta \psi_1 \sin \theta \left(\frac{\partial \psi_1}{\partial \theta}\right)^2
\]

\[
+ \frac{\kappa B^2}{\mu_0} \cos^2 (\varphi - \omega t) + \frac{\partial \gamma}{\partial \theta} \frac{\partial \gamma}{\partial \phi} \right) \sin \theta \cos \theta
\]

In the stationary regime, we search the solution in the form \(\{\varphi(t), \theta(z)\}\) with \(\varphi(t) = \omega t - \alpha\). After substitution into Equation (A5), we obtain
where \( \omega_c \) is defined in Equation (4). Substitution into Equation (A6) gives after a first integration:

\[
\left( \frac{d\theta}{dz} \right)^2 = \frac{\sin^2 \theta_m - \sin^2 \theta}{1 + \kappa \sin^2 \theta} \left[ \frac{(V/V_F)^2}{F^2(1 + \gamma \sin^2 \theta)(1 + \gamma \sin^2 \theta_m)} - (V_b/V_F)^2 \right].
\] (A8)

In this expression, \( Z = \pi z/d \), \( \theta_m \) is the maximum tilt angle at \( Z = \pi/2 \) to be determined, \( V_b \) and \( V_0 \) are defined in Equation (8), \( V_F = \pi \sqrt{\frac{k_B}{\omega_c}} \) is the usual critical voltage at zero magnetic field in the bend geometry and

\[
J = \frac{1}{\pi} \int_0^\pi d\psi \frac{1}{1 + \gamma \sin^2 \theta}
\] (A9)

is an integral to be determined.

From Equation (A8), we obtain after setting \( \sin \psi = \sin \theta_m \sin \psi \):

\[
Z = \int_0^{\arcsin(\frac{\pi \theta_m}{2})} d\psi \sqrt{\frac{(1 + \kappa \gamma \sin^2 \psi)(1 + \gamma \eta \sin^2 \psi)(1 + \gamma \eta)}{(1 + \eta \sin^2 \psi)}}
\] (A10)

where \( \eta = \sin^2 \theta_m \). This integral equation gives the profile \( \theta(Z) \) providing that \( \theta_m \) and \( J \) are known. These two quantities are obtained by expressing that \( \theta = \theta_m \) at \( Z = \pi/2 \) in Equation (A10) and by writing that

\[
J = \frac{2}{\pi} \int_0^{\theta_0} d\theta \frac{1}{\psi^2} (1 + \gamma \sin^2 \theta).
\] (A11)

This procedure gives two equations from which \( \theta_m \) and \( J \) (or \( D_2 \), knowing that \( D_2 = -\frac{\epsilon \rho_0 V^2}{2 M \psi} \)) can be determined:

\[
\frac{\pi}{2} = \int_0^{\pi/2} \frac{(1 + \kappa \gamma \sin^2 \psi)(1 + \gamma \eta \sin^2 \psi) \sin^2 \psi \sin \psi}{(1 + \eta \sin^2 \psi)(1 + \gamma \sin^2 \psi)}
\] (A12)

\[
\frac{\pi}{2} = \int_0^{\pi/2} \frac{(1 + \kappa \gamma \sin^2 \psi)(1 + \gamma \eta \sin^2 \psi) \sin^2 \psi \sin \psi}{(1 + \eta \sin^2 \psi)(1 + \gamma \sin^2 \psi)}
\] (A13)

At the onset of instability, the two previous equations have a trivial analytical solution corresponding to \( \theta = 0 \), \( \forall Z \). As a consequence \( \eta = 0 \), \( J = 1 \) and \( \frac{1 - \eta}{\psi^2} = 1 \) at the onset of instability. This last equation is the same as Equation (11) given in Section 2 on condition to replace \( K \) by \( K_3 \). The main interest of this calculation is to show that the tilt angle profile can be exactly calculated by solving numerically Equations (A10), (A12) and (A13) (under the assumption that the backflow is negligible).