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Fréedericksz transition under electric and rotating magnetic field: application
to nematics with negative dielectric and magnetic anisotropies
P. Oswald, G. Poy and F. Vittoz

Laboratoire de Physique, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Lyon, France

ABSTRACT
We study the action of a rotating magnetic field on the Fréedericksz instability under electric field
of a homeotropic nematic sample sandwiched between two parallel electrodes. The liquid crystal
(LC) is of negative dielectric and magnetic anisotropies and the magnetic field is parallel to the
electrodes used to apply the electric field. We show that the sample destabilises above a critical
voltage Vc that depends on the magnetic field B and its angular rotation velocity ω. The relation
VcðB;ωÞ is calculated analytically in the synchronous regime, where the director rotates at the
same angular velocity as the magnetic field. These predictions are compared to the experiment
performed with the LC CCN-37. From this experiment, the values of the bend constant K3, of the
rotational viscosity γ1 and of the magnetic anisotropy χa are deduced.
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1. Introduction

The Fréedericksz transition [1] is a bifurcation between
two nematic states: a uniform state in which the director
is oriented in a single direction and a distorted state in
which the director field is distorted upon application of
a strong enough magnetic or electric field. This transi-
tion is important in practice because the fabrication of
the liquid crystal (LC) displays [2,3] used in our daily
life is based on it. This transition is also very useful for
measuring the three elastic constants Ki ði ¼ 1� 3Þ of
the nematic phase. The most usual technique described
in all textbooks on LC consists of submitting a planar
(or homeotropic) nematic sample to a magnetic (or
electric) field parallel or perpendicular to the plates

limiting the sample. Measuring the critical electric (or
magnetic) field yields the ratios Ki=εa (or Ki=χa), where
Ki depends on the geometry chosen [4]. The elastic
constant can then be calculated, provided the dielectric
(or magnetic) anisotropy εa (or χa) is known. In practice,
the dielectric constants – and consequently their aniso-
tropy – are easy to measure with a LCR meter. By
contrast, the magnetic anisotropy is more difficult to
measure because the materials are diamagnetic (with
very small magnetic susceptibilities). In practice, several
methods have been used to measure χa. Some of them,
as the Faraday–Curie method [5,6], the Gouy balance
method [7] or those using a superconducting quantum
interference device [8], are indirect and consist in
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measuring χk (if χa>0) or χ? (if χa<0) in a bulk nematic

sample and �χ ¼ ðχk þ 2χ?Þ=3 – a quantity which does

not depend on temperature because the material is
diamagnetic – in the isotropic liquid. From these two
measurements, χa can be deduced. In another technique,
a bulk nematic sample is subjected to a rotating mag-
netic field B. Measuring the maximum torque that the
field exerts on the sample directly gives the magnetic
anisotropy. But this method works only with materials
of positive magnetic anisotropy [9]. Another method,
simpler to implement, is to impose a strong magnetic
field that stabilises the initial director configuration in
an oriented sample. Measuring the increase of the cri-
tical voltage necessary to destabilise the structure gives
the ratio χa=εa from which χa can be deduced knowing
εa. This method was successfully applied by Schad et al.
[10] to materials with positive or negative χa, but posi-
tive εa. On the other hand, this method is not easily
applicable to the materials with negative dielectric and
magnetic anisotropies which are considered in this arti-
cle. Indeed, the only possibility would be to use a home-
otropic sample with the two fields perpendicular to the
plates or a planar sample with the two fields parallel to
the anchoring direction. In these two configurations, the
two fields are destabilising. The ratio χa=εa could be
obtained by measuring the decrease of the critical elec-
tric field when the magnetic field is smaller than the
critical magnetic field necessary to destabilise the struc-
ture at zero electric field. The difficulty here is to
impose, either a magnetic field perpendicular to the
sample (we do not have the appropriate electromagnet)
or an electric field parallel to the sample.

For this reason, we looked for another technique
using a Halbach array. With this permanent mag-
net, a very homogeneous magnetic field B can be
applied in the plane of the sample. In this article,
we show theoretically and experimentally that the
onset of instability under electric field of a home-
otropic sample increases when it is submitted to a

magnetic field parallel to the plates and rotating at
angular velocity ω. By measuring the critical voltage
VcðωÞ as a function of ω, or equivalently, the critical
rotation velocity ωcðVÞ above which the sample
restabilises when it is subjected to a voltage V larger
than VF (the Fréedericksz critical voltage at B ¼ 0),
we show that it is possible to measure the ratios
K3=εa, �a=χa and γ1=χa, where γ1 is the rotational
viscosity. This technique is applied to the LC CCN-
37 which has dielectric and magnetic anisotropies
both negative [11].

2. Theoretical analysis

We consider a nematic sample sandwiched between
two parallel electrodes at z ¼ 0 and z ¼ d treated for
strong homeotropic anchoring. The director orienta-
tion is given by the zenith angle θ and the azimuthal

angle φ. The electric field ~E is parallel to the z-axis

and the magnetic field ~B is parallel to the xy-plane
and rotates with the angular velocity ω (Figure 1).
For simplicity, we present here the calculation in
isotropic elasticity (K ¼ K1 ¼ K2 ¼ K3) by further
assuming that the electric field is constant:
E ¼ V=d, where V is the applied voltage. The com-
plete calculation in anisotropic elasticity and taking
into account the electric field variation within the
nematic layer is given in the Appendix. By neglect-
ing the backflow effect (this approximation is justi-
fied experimentally, see section 4), the torque
equations read

γ1
@θ

@t
¼ K

@2θ

@z2
� K sin θ cos θ

@φ

@z

� �2

� ε0εaE
2 sin θ cos θ

þ χaB
2

μ0
sin θ cos θcos2ðφ� ωtÞ; (1)
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Figure 1. Definition of angles θ and φ and of the phase lag α.
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γ1
@φ

@t
¼ K

@2φ

@z2
þ K cot θ

@φ

@z

� �
@θ

@z

� �

� χaB
2

μ0
sinðφ� ωtÞ cosðφ� ωtÞ; (2)

where ε0 is the vacuum permittivity. We look for a
stationary solution of the form φðtÞ ¼ ωt � α with α
a constant and θðzÞ only function of z. After substitu-
tion into Equation (2), one obtains the phase lag α ¼
π=2þ δ between the magnetic field and the projection
of the director onto the xy-plane (Figure 1) with

δ ¼ 1
2
arcsin

ω

ω?

� �
; (3)

and

ω? ¼ �χaB
2

2γ1μ0
: (4)

Equation (3) shows that this solution exists only
when ω<ω?. This defines the limit between the syn-
chronous regime and the asynchronous regime [9,12].
In the following, we restrict our analysis to the syn-
chronous regime (ω � ω?). Another important point is
that α does not depend on the applied voltage, provid-
ing that the voltage is larger than VF .

The angle θðzÞ is obtained by replacing φ by its
expression into Equation (2). This gives

d2θ
dz2

¼ � 1
�2e

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω

ω?

� �2
r
2�2m

2
664

3
775 sin θ cos θ; (5)

where �e and �m are the electric and magnetic coherence
lengths, respectively [4]:

�2e ¼
�K

ε0εaE2
and �2m ¼ �μ0K

χaB
2 : (6)

By setting Z ¼ πz=d, this equation can be rewritten
in the form

d2θ
dZ2

¼ � V2 � V2
B

V2
F

� �
sin θ cos θ; (7)

where VF ¼ π
ffiffiffiffiffiffiffiffi
K

�ε0εa

q
is the usual critical voltage at zero

magnetic field (or under a static magnetic field in this
experiment) and

V2
B ¼ V2

0 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω

ω?

� �2
s2

4
3
5 with V0 ¼

ffiffiffiffiffiffi
χa
2εa

r
Bdc

(8)

and c the velocity of light. Integrating Equation (5)
gives

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � V2

B

V2
F

s
¼

ðθðZÞ
0

dθ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θm � sin2θ0

p

¼
ðarcsin sin θðZÞ

sin θmð Þ
0

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2θmsin2ψ

p ; (9)

where θm denotes the maximum tilt angle in the mid-
dle of the cell (at Z ¼ π=2) and sin θ0 ¼ sin θm sinψ.
From this equation, the profile θðZÞ can be calculated
numerically. More important, this equation shows that
at Z ¼ π=2, the angle θm satisfies the equation

π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � V2

B

V2
F

s
¼

ðπ=2
0

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2θmsin2ψ

p ¼ Kðsin θmÞ;

(10)

where KðxÞ is the complete elliptic integral of the first
kind. Because KðxÞ> π

2 "x, we deduce that the home-

otropic sample destabilises when V2�V2
B

V2
F

� 1. This

defines the onset of instability VcðωÞ which depends
on the angular velocity of the magnetic field:

VcðωÞ
VF

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

B

V2
F

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

0

V2
F

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω

ω?

� �2
s2

4
3
5

vuuut (11)

where V2
0 / B2 is given in Equation (8), or equiva-

lently, the critical velocity ωcðVÞ above which the sam-
ple restabilises when it is submitted to a
voltage V � VF :

ωcðVÞ
ω?

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� V2 � V2

F

V2
0

� �2
s

(12)

Note that these equations are only valid in the
synchronous regime to which we restrict our analysis.
A schematic phase diagram is shown in Figure 2. In the
Appendix, we show that this equation remains
unchanged in the general case on condition to
take K ¼ K3.

This analysis shows that the onset of the
Fréedericksz transition in the bend geometry (home-
otropic sample) increases under the action of a rotating
magnetic field in the synchronous regime. This effect is
original because the onset remains unchanged when
the field is static, which is not the case in the usual
experiments performed under crossed fields as in [10].
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From the measurement of VcðωÞ (or equivalently
ωcðVÞ when V >VF), the ratios K3=εa and εa=χa can
be deduced. In addition, the measurement of the phase
lag αðωÞ gives the ratio γ1=χa according to Equations
(3) and (4). In the following, we apply these results to
the measurement of K3, χa and γ1 in the LC CCN-37.

3. Material and experimental set-up

The LC chosen is CCN-37 (or 4α,4’α-propylheptyl-1α,1’α-
bicyclohexyl-4β-carbonitrile from Nematel GmbH & Co.
KG, Mainz, Germany). This LC has a nematic phase
between 22.5°C and 54.1°C [11]. Its dielectric anisotropy
– that we and Merck have previously measured [11,14], is
negative and well fitted by formula �a ¼ �7:0963þ
0:06534δT þ 3:8563=ð0:26291� δTÞ0:17576, where δT ¼
T � TNI is given in kelvin (where TNI is the nematic-iso-
tropic transition temperature). The sample is prepared
between two parallel indium tin oxide electrodes treated
for homeotropic anchoring with the Nissan polyimide
0626. Nylon wires are used as a spacer and the sample
thickness is measured to within � 0:1 μm with a spectro-
meter. The sample is placed in an oven regulated to within
� 0:02°C, thanks to an ATNE controller. The rotating
magnetic field is imposed by placing the oven and the
sample inside a Halbach magnet which can rotate about
its revolution axis and produces a horizontal 1 T magnetic
field in its centre. The experimental set-up, already
described in detail in [15] and [13], was modified by one
of us (F.V.) in order that themagnet and its drivemotor are
mechanically decoupled from the oven and themicroscope
used to observe the sample. In this way, no vibration is now
transmitted from the motor to the sample. A schematic
representation of our set-up is shown in Figure 3where two
photodiodes are visible. The first one PD1 gives a signal I1
of frequency 2ω, the phase of which Φ1 gives the orienta-
tion of themagnetic field. The other PD2 gives a signal I2 of

frequency 4ω, the phase of which Φ2 directly gives the
orientation of the director projector ~nk in the horizontal
plane (knowing that the director remains everywhere in the
same vertical plane in the synchronous regime). Finally, the
sample can be directly observed through the microscope
which is useful to check the quality of the homeotropic
anchoring. A three-dimensional PDF view of the complete
set-up is shown in the supplemental material.

4. Experimental results

All experiments were performed with a sample of
thickness d ¼ 70:5 μm and an alternating current vol-
tage of frequency 1 kHz. We first measured the critical
voltage VF above which the sample destabilises when
the magnet does not rotate. In this case, the only action
of the magnetic field is to lift the degeneracy about the
tilt direction of the director in the sample thickness
above VF . The measurements were performed by
directly observing the sample between crossed polari-
sers at 45° to the magnetic field, while simultaneously

1
ω

/ω
∗

1
V/VF

unstable

stable

sy
nc

hr
on

ou
s 

re
gi

m
e

(1+V2 / V2)1/2
0 F

asynchronous regime

Figure 2. Phase diagram in the plane of the parameters ω=ω?

and V=VF . Only the synchronous regime was considered.

Figure 3. Schematic representation of the experimental set-up
(from [13], M is the magnet (Halbach array), O is the oven
which can be moved along the vertical axis and S is the
sample. L is a microscope objective with a long working
distance. PD1 and PD2 are two photodiodes. S1 is a red LED
source and S2 is a white light source. P1 is a rotating polariser
attached to the magnet, P2 is a fixed polariser and A1 and A2
are two fixed analysers. The dashed line drawn on the upper
side of the magnet indicates the direction of the magnetic field
along the revolution axis of the magnet. Note that in this
experiment, the oven is placed in the centre of the magnet
where the magnetic field is the strongest (B ¼ 1 T) and the
most homogeneous.
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measuring the cell capacitance with a HP 4284A LCR
meter. Both methods gave the same results. From these
measurements, K3 was obtained by using the formula
for εa given earlier. These measurements are in good
agreement with previous ones performed in a much
thinner sample (see [14]) and with Merck data [11]. All
of our data (including those of [14]) are well fitted with

formula K3ðpNÞ ¼ 3:18� 0:243 δT �
79:4=ð3:5� δTÞ3 as can be seen in Figure 4. We then
measured the phase lag α (or equivalently δ ¼ α� π=2)
as a function of the rotation velocity ω by using the
same procedure as in [13,15]. First, we checked that at
each temperature the curves δðωÞ obtained for different
values of V>VF were superposable (Figure 5), in agree-
ment with our model (see Equation (3)). This shows
that the backflow effect is negligible in this experiment
(at least when optical measurements are done in the
middle of the sample) and that the measured rotational

viscosity is very close to γ1. The same conclusion was
already reached in our previous experiments conducted
with nematic LCs of positive magnetic anisotropy [13].
Second, we systematically measured the slope at the
origin m of the curve δðωÞ as a function temperature.
From this measurement, the ratio γ1=ð�χaÞ was calcu-
lated knowing that γ1=ð�χaÞ ¼ mB2=μ0, according to
Equations (3) and (4) (Figure 6). Finally, we measured
the critical velocity ωc above which the instability dis-
appears when a voltage V>VF is applied. This was done
by measuring the average value of the transmitted
intensity through the sample between crossed polari-
sers as a function of ω. Typical curves are shown in
Figure 7. They show that the mean intensity decreases
linearly with the rotation velocity and vanishes above a
critical velocity ωc, meaning that the sample is again
homeotropic. It can be noted that the transition is
continuous, as predicted by the theory, but slightly
smoothed near ωc. This could be due to the fact that
the magnetic field is certainly not exactly parallel to the
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this work
from Ref. [13]
Merck data [11]
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Figure 4. (colour online) Bend elastic constant K3 as a function
of temperature and its fit (solid line) with the formula given in
the text.
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plane of the sample. Finally, a typical curve ω2
c=ω

2
?

(with ω? ¼ 1=ð2mÞ) as a function of V2 � V2
F is

shown in Figure 8 together with its best fit to
Equation (12) where the only adjustable parameter is
V0. Again the agreement between theory and experi-
ment is good. From this fit, V0 and, thus, the ratio
χa=�a can be obtained by using Equation (8). The
magnetic anisotropy χa was then calculated since εa is
known. The same procedure was repeated at other
temperatures to obtain the curve χaðδTÞ shown in
Figure 9. Finally, the rotational viscosity γ1 was calcu-
lated from the data in Figure 6 by using our values of
χa. The result is shown in Figure 10. It must be noted
here that our values of χa are rather different from
those given by Merck [11] as can be seen in Figure 9.
The origin of this disagreement is unknown. On the
other hand, the value of γ1 that we find at the transi-
tion, γ1ðTNIÞ ¼ 0:0079 Pa s, agrees well with the value
previously measured by using the Fréedericksz

transition in the bend geometry after correction of
the backflow effect: γ1ðTNIÞ ¼ 0:0074 Pa [14]. This
agreement confirms that our value of the magnetic
anisotropy at the transition is actually correct.

5. Conclusion

We have shown that a rotating magnetic field parallel
to the electrodes increases the Fréedericksz critical
voltage in the bend geometry when the LC is of
negative dielectric and magnetic anisotropies. This
phenomenon can be used to measure the ratio εa=χa
and generalises the classical method of the
Fréedericksz transition under crossed fields used so
far to measure this ratio when one of the fields
(usually the magnetic one) is stabilising while the
other (usually the electric one) is destabilising. The
originality here is that the magnetic field is ‘neutral’
at rest and becomes only stabilising when it is rotat-
ing. In our study, the calculations – and the measure-
ments with the LC CCN-37 – were performed in the
synchronous regime in which the director rotates at
the same velocity as the magnetic field. Nevertheless,
this phenomenon should also exist in the asynchro-
nous regime, but the calculations become much more
complicated and can no longer be made analytically.
We must also note that our calculations in the syn-
chronous regime are much simplified because they
neglect the backflow effect, necessarily present in this
geometry [9]. On the other hand, this effect seems
negligible at the centre of the sample where all of our
measurements were performed. In the future, it
would interesting to test this hypothesis by numeri-
cally solving the complete equations of the nemato-
dynamics as in the paper of Svenšek and Žumer [16]
dealing with backflow effect in nematic LCs confined
to a long capillary and subject to a magnetic field.
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Appendix. Exact calculation of the phase
diagram without backflow

In this Appendix, we show that Equations (3) and (4) that
give the phase lag α and Equations (11) and (12) that define
the transition line in the parameter plane ðω;VÞ remain
unchanged in anisotropic elasticity (on condition to take
K ¼ K3) when the effects of non-uniformity of the electric
field are taken into account.

In our experiment, the frequency of the electric field is
much larger than the charge relaxation frequency of the LC,
meaning that we are in the dielectric regime. In this regime,
the free energy – including the magnetic and electric con-
tributions – reads [17] by assuming from now on that the
director field is not twisted (@φ=@z ¼ 0):

F½~n; t� ¼
ðd
0
dz

K3

2
ð1þ κ sin2θÞ @θ

@z

� �2

� χaB
2

2μ0
sin2θ cos2ðφ� ωtÞ

" #

þ 1
2
VDz

(A1)

where V ¼ VðdÞ � Vð0Þ is the applied voltage, κ ¼ K1
K3
� 1,

γ ¼ � εa
εk

and Dz (constant) is the vertical component of the

dielectric displacement vector given by

Dz ¼
�ε0εkVðd

0

dz
1þγ sin2θ

:

(A2)

The torque equations follow by writing that

γ1
@φ

@t
¼ � 1

sin2θ

δF
δφ

(A3)

γ1
@θ

@t
¼ � δF

δθ
(A4)

which gives

γ1
@φ

@t
¼ � χaB

2

μ0
cosðφ� ωtÞ sinðφ� ωtÞ (A5)

γ1
@θ
@t ¼ K3

@2θ
@z2 ð1þ κ sin2θÞ þ K3κ cos θ sin θ @θ

@z

� �2
þ χaB

2

μ0
cos2ðφ� ωtÞ þ D2

zγ

ε0εkð1þγsin2θÞ2

	 

sin θ cos θ

(A6)

In the stationary regime, we search the solution in the form
φðtÞ; θðzÞf g with φðtÞ ¼ ωt � α. After substitution into

Equation (A5), we obtain
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α ¼
π þ arcsin ω

ω?

� �
2

(A7)

where ω? is defined in Equation (4). Substitution into
Equation (A6) gives after a first integration:

dθ
dZ

� �2

¼ sin2θm � sin2θ

1þ κ sin2θ

ðV=VFÞ2
J2ð1þ γ sin2θÞð1þ γ sin2θ2mÞ

� ðVB=VFÞ2
" #

:

(A8)

In this expression, Z ¼ πz=d, θm is the maximum tilt angle at
Z ¼ π=2 to be determined, VB and V0 are defined in

Equation (8), VF ¼ π
ffiffiffiffiffiffiffiffiffi
K3

�ε0εa

q
is the usual critical voltage at

zero magnetic field in the bend geometry and

J ¼ 1
π

ðπ
0

dZ
1þ γ sin2θ

(A9)

is an integral to be determined.
From Equation (A8), we obtain after setting

sin θ0 ¼ sin θm sinψ:

Z ¼ J

ðarcsin sin θðZÞ
sin θmð Þ

0
dψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þκη sin2ψÞð1þγη sin2ψÞð1þγηÞ

1�η sin2ψ

V
VF

� �2
� J2 VB

VF

� �2
ð1þ γη sin2ψÞð1þ γηÞ

vuuut ;

(A10)

where η ¼ sin2θm. This integral equation gives the profile
θðZÞ providing that θm and J are known. These two quan-
tities are obtained by expressing that θ ¼ θm at Z ¼ π=2 in
Equation (A10) and by writing that

J ¼ 2
π

ðθm
0
dθ

1
dθ
dZ

ð1þ γ sin2θÞ : (A11)

This procedure gives two equations from which θm and J (or

Dz, knowing that Dz ¼ � εkε0V
dJ ) can be determined:

π

2
¼ J

ðπ=2
0

dψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þκη sin2ψÞð1þγη sin2ψÞð1þγηÞ

1�η sin2ψ

V
VF

� �2
� J2 VB

VF

� �2
ð1þ γη sin2ψÞð1þ γηÞ

vuuut ;

(A12)

π

2
¼

ðπ=2
0

dψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þκη sin2ψÞð1þγηÞ

ð1�η sin2ψÞð1þγη sin2ψÞ
V
VF

� �2
� J2 VB

VF

� �2
ð1þ γη sin2ψÞð1þ γηÞ

vuuut :

(A13)

At the onset of instability, the two previous equations have a
trivial analytical solution corresponding to θ ¼ 0;"Z. As a con-

sequence η ¼ 0, J ¼ 1 and V2�V2
B

V2
F

¼ 1 at the onset of instability.

This last equation is the same as Equation (11) given in Section 2
on condition to replace K by K3. The main interest of this
calculation is to show that the tilt angle profile can be exactly
calculated by solving numerically Equations (A10), (A12) and
(A13) (under the assumption that the backflow is negligible).
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