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Droplet relaxation in Hele-Shaw geometry: Application to the measurement of the
nematic-isotropic surface tension
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Shape measurements after the coalescence of isotropic droplets embedded in a thin sample of a homeotropic
nematic phase provides a tool to measure the nematic-isotropic surface tension. In addition, this experiment
allows us to check the scaling laws recently given by Brun et al. [P.-T. Brun, M. Nagel, and F. Gallaire, Phys.
Rev. E 88, 043009 (2013)] to explain the relaxation of ellipsoidal droplets in a Hele-Shaw cell.
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I. INTRODUCTION

In a recent article, Brun et al. [1] studied the relaxation
of an ellipsoidal drop of a fluid 1 placed in a Hele-Shaw cell
filled with a fluid 2 (Fig. 1). The two fluids are immiscible,
of viscosities μ1 and μ2, and the surface tension that drives
the process is denoted by γ . Fluid 2 is at rest at infinity
and wets the walls of the cell. The main result of this
theoretical and numerical study is that the drop deformation
Df = (L − W )/W (where L and W denote the drop length
and width, respectively) relaxes to 0 exponentially with the
typical time constant τr = R3(μ1+μ2)

h2γ
. In this expression R is

the final radius of the droplet (R = √
WL/2) and h is the

cell thickness assumed to be small with respect to R. More
precisely, Brun et al. have shown that

Df (t) = Df (0) exp

(
− α

t

τr

)
, (1)

where α is a number (of the order of 0.36) that depends very
little on both the confinement ratio k = R/h and the viscosity
ratio r = μ1/(μ1 + μ2) (in the limit 4 � k � 10 and 0 � r �
10/11) [1].

These predictions have not yet been checked in microfluidic
devices and the reason certainly arises from the difficulty in
preparing ellipsoidal droplets of different sizes in a fluid at
rest at infinity (although this could be done by submitting for a
short time the droplet to a hyperbolic flow [2]). For this reason,
we performed this experiment in a different way by observing
the coalescence and the relaxation of droplets of isotropic
liquid in a homeotropic sample of nematic liquid crystal.
This experiment, which was conducted in the coexistence
region of the two phases, has several advantages over standard
experiments with microfluidic devices: The sample thickness
and the droplet radius can be changed very easily and the
dynamics is much slower than with a usual liquid because the
nematic-isotropic surface tension is 3 to 4 orders of magnitude
smaller than that between two usual liquids (such as oil and
water).

In addition, the measurement and prediction of the nematic-
isotropic surface tension has long attracted attention from
both theorists [3–11] and experimentalists [12–15]; hence
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the interest of proposing an alternative method to measure
accurately this quantity.

II. SAMPLE PREPARATION

The liquid crystals (LCs) chosen are two pure com-
pounds, 4-n-heptyl-4′-cyanobiphenyl (7CB) (Merck, Ger-
many) [16] and 4α,4′α-propylheptyl-1α,1′α-bicyclohexyl-4β-
carbonitrile (CCN37) (Nematel, Germany) [17]. They are
used without further purification. The 7CB (CCN-37) LC
melts at about 42.65 ◦C (54.75 ◦C). Their freezing range
at the nematic-isotropic phase transition is of the order of
0.05 ◦C, which is too small to stabilize the size of the droplets
during the experiments. For this reason, we dope them with
5 wt. % of biphenyl (BP) in order to increase their freezing
range. For the mixture 7CB + BP (CCN-37 + BP), we measure
Tsolidus ≈ 34.9 ◦C and Tliquidus ≈ 35.6 ◦C (Tsolidus ≈ 48.4 ◦C
and Tliquidus ≈ 48.6 ◦C). The samples are prepared between
two float glass plates (of size 20 × 20 × 1.1 mm3) and nickel
wires of calibrated diameter are used as a spacer. The sample
thickness is always larger than 5 μm, which is much more than
the critical thickness, of the order of 0.1 μm [18], below which
the substrate ordering starts to shift the transition temperature.
The thickness in the center of the sample is measured to
within ±0.1 μm with a spectrophotometer before filling with
the LC. The parallelism between the glass plates is adjusted
while viewing the interference fringes in natural light. Samples
with more than two fringes over the whole surface area are
systematically eliminated. Polyimide Nissan 0626 and silane
ZLI 3124 from Merck are used to achieve strong homeotropic
anchoring. With these surface treatments, the nematic phase
completely wets the glass plates. Both give similar results. The
samples are sealed on the sides with UV glue NOA 81 (Norland
Optical adhesive) to prevent the BP from evaporating [19]. The
samples are placed inside a homemade oven, the temperature
of which is controlled to within ±0.01 ◦C by a RKC HA400
controller.

III. EXPERIMENTAL RESULTS

To observe the drop coalescence, the sample is slowly
heated from the homeotropic nematic phase. Once the tem-
perature is above Tsolidus, drops of isotropic liquid nucleate
in the sample. By moving the sample inside the oven, we
look for a pair of drops that are close to each other, but well
isolated from the others. The temperature is then increased
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FIG. 2. Relaxation of a drop of isotropic liquid in a homeotropic
nematic sample of the mixture 7CB + 5%BP. The time interval
between two photos is 4 s. The ellipses in dashed line have been
fitted by IMAGEJ. The sample thickness is h = 9.5 μm and the final
drop radius is R ≈ 45 μm.

very slowly (by typically 0.02 ◦C per minute) in order to grow
the drops. When they are almost in contact, the temperature
is stabilized. After some time, the drops coalesce, forming
a single drop. A waist forms that progressively disappears
and the drop becomes ellipsoidal before it slowly relaxes to a
circular shape.

In this paper we focus our attention on this slow, final
relaxation process. An example is shown in Fig. 2. In
this example, the photos are taken in natural light and the
microscope is slightly defocused in order to better see the side
of the droplet. An examination between crossed polarizers
shows that the nematic phase remains perfectly homeotropic
during the final stage of the relaxation process, once the waist
is well formed [as in the photo in Fig. 2(a)]. The situation is
different at the very beginning of the coalescence because a
short birefringence flash is observed just when the waist forms.
This flash shows that the director field transiently destabilizes,
but this is beyond the scope of the paper. The images are
recorded with a videocamera AVT PIKE F-145B and then
treated using the software IMAGEJ. In practice, a threshold
is applied to each image to extract the drop contour, which
is then fitted to an ellipse. This allows us to measure the
deformation Df of the drop as a function of time. The curve
corresponding to the pictures shown in Fig. 2 is shown in
Fig. 3 with its fit to an exponential law. The fit is in excellent
agreement with the theory of Brun et al. [1]. In the following
we denote by τ the relaxation time found experimentally.
The hydrodynamic theory predicts that τh2/R3 depends only
slowly on the confinement ratio k = R/h [see Eq. (1)]. To
test this prediction, we measured systematically this quantity
as a function of the confinement ratio in samples of different
thicknesses (ranging between 5 and 22 μm). Our results are
shown in Fig. 4 for the two liquid crystals studied. The data
are a bit dispersed. Four reasons can explain this dispersion.
First, the droplets are seldom exactly of the same radius when
they coalesce. In practice, we took care to keep only pairs
of droplets for which the radius difference was lower than
typically 10%. In this case, the ellipsoidal shape is rapidly
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FIG. 3. (Color online) Drop deformation Df and drop surface
area as a function of time for the sequence of pictures shown in
Fig. 2. The surface area is constant to better than 2% during the
whole relaxation process. The dashed line is the best fit of Df to
an exponential law. The fit is typically indistinguishable from the
experimental curve from the photo in Fig. 2(b).
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FIG. 4. (Color online) Combination R3/τh2 as a function of the
confinement ratio R/h for the two mixtures studied. Note that in
these experiments, τ typically varied from 2 to 700 s.

reached as shown in Fig. 2. Second, it is very difficult (but not
impossible) to prepare pairs of droplets that are completely
isolated from the others. However, we realized that the results
were not significantly changed when other drops were present
in the vicinity of the relaxing drop, i.e., at a distance of the
order of or larger than R. For this reason, we kept these drops
in our analysis. Third, the sample thickness can change a little
(within an optical fringe) in the central part of the sample
observed in the microscope (of size 1 × 1 cm2). This means
that the thickness is known at best to within ±0.25 μm, which
introduces an error of ±10% in the thinnest samples. Finally,
one might worry about the existence of nematic layers wetting
the plates inside the drops. This could change the radius of
curvature of their meniscus and introduce a systematic error.
The answer to this question is given by applying the Gibbs-
Thomson equation to the meniscus after equilibration of the
drops: T = Tc + mCI − γ Tc

�H
C. In this equation T is the actual

temperature, Tc is the transition temperature of the pure LC, m
is the slope of the liquidus, CI is the impurity concentration in
the isotropic liquid (constant at equilibrium), �H is the latent
heat, and C is the curvature of the meniscus, here negative.
This relation immediately shows that the actual temperature T

is always larger than the equilibrium temperature of the planar
front Tc + mCI . As a consequence, a macroscopic wetting
layer cannot exist, because it must melt. This shows that
only wetting layers of microscopic thickness exist between
the glass and the isotropic liquid inside the drops when they
are equilibrated. The radius of curvature of the meniscus is
thus well equal to h/2 in the sample thickness, as assumed in
the model of Brun et al. [1].

IV. DISCUSSION AND SURFACE TENSION
MEASUREMENT

Our experimental results show that the relaxation time τ

scales like R3/h2 as predicted by the hydrodynamic theory.
This shows that the two phases behave as two immiscible
fluids. This observation is important because the drop could
also relax via a melting-recrystallization process. Nonetheless,

this process is very slow and negligible here as it takes a typical
time [20]

τmr ∼ �H�T

γTcD
R3, (2)

independent of h, where Tc is the transition temperature
of the pure compound, �T the freezing range, �H the
latent heat per unit volume, and D the diffusion coefficient
of the impurity (BP in our case). With typical values γ ≈
10−5 N/m [12,14], �H ≈ 106 J/m3 [16], D ≈ 10−10 m2/s,
Tc ≈ 300K, �T ≈ 1 ◦C, and R = 30 μm, we calculate τmr ∼
105 s, which is indeed very long with respect to time τ

measured experimentally (of the order of 10 s).
Our goal is to measure γ , so we need to know the viscosities

of the two phases. Viscosity μ1 is well defined because
it is the viscosity of the isotropic liquid ηiso. By contrast,
viscosity μ2 is less clear because, in nematic liquid crystals,
the viscosity depends on the orientation of the director �n
with respect to the velocity �v and the velocity gradient �∇v.
In our case, the nematic is sheared both in the plane and in
the thickness of the sample. For this reason, μ2 must be a
combination of the two Miesowicz viscosities ηa (measured
when �n ⊥ �v and �n ⊥ �∇v) and ηc (measured when �n ⊥ �v
and �n ‖ �∇v) [21]. However, we can argue that when h � R,
the viscous dissipation is dominated by the Poiseuille flow
in the sample thickness. For this reason, and because the
nematic remains perfectly homeotropic during the final stage
of the relaxation, we can safely assume that μ2 is very close
to viscosity ηc and take μ1 + μ2 = ηiso + ηc. We measured
these two viscosities to within ±10% with a piezoelectric
rheometer. These measurements are described in detail in
another paper [22]. For 7CB, we found ηiso = 0.0235 Pa s
and ηc = 0.0352 Pa s (in very good agreement with the values
given by Ananthaiah et al. [23]), which give r ≈ 0.4, and
for CCN-37 we found ηiso = 0.027 Pa s and ηc = 0.039 Pa s,
which also give r ≈ 0.4. In practice, we measured τ = τr/α =
R3(μ1+μ2)

h2γα
[see Eq. (1)], so we need to know α to determine γ .

This coefficient was calculated numerically by Brun et al. [1]
as a function of the confinement ratio k (for 4 � k � 10) and
the viscosity ratio r . They found α = a + bk with a = 0.36
and b = 0.005 for r ≈ 0.4. Finally, the surface tension can
be calculated from our data and the relation γ = ηiso+ηc

α
R3

h2τ

(where R3

h2τ
is given in Fig. 4). Figure 5 shows the values of

γ deduced from our measurements of drops of confinement
radius 4 � k � 10. This graph shows that for the two liquid
crystals studied, the values of γ found experimentally are
independent of k within the experimental dispersion and are
equal on average to

γ7CB = 1.12 ± 0.2 10−5 N/m,

γCCN-37 = 0.56 ± 0.1 10−5 N/m,

where the errors have been estimated by including those on
the viscosities. We emphasize that the value found for 7CB
agrees within the error with that given by Faetti and Palleschi
(γ7CB = 1.8 ± 0.7 10−5 N/m [14]).

It is also interesting to compare this value with the value
predicted from the Landau–Ginzburg–de Gennes model of the
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FIG. 5. (Color online) Surface tension γ measured by applying
the numerical results of Brun et al. [1] as a function of the confinement
ratio k when 4 � k � 10.

interface [3,21]

γ = 2
√

2

81

B3

C2

√
L

C
, (3)

where B and C are the Landau coefficients for the cubic and
quartic terms in the power series expansion of the Landau
energy as a function of the quadrupolar order parameter
and L is a stiffness coefficient (Ginzburg term). The first
two terms have been measured by Coles in 7CB: B = 3.3 ±
0.2 J/cm3 and C = 8.1 ± 0.3 J/cm3 [24]. The stiffness L can
be estimated from the value of the elastic constant K at the
transition by using the relation K ≈ 3LS2

c , where Sc = 2B
3C

is the value of the order parameter at the transition [21].
With K ≈ 2 × 10−12 N [25], we obtain L ≈ 9 ± 3 10−12 N.
Finally, we calculate γ = 2 ± 1 10−5 N/m, which is quite
compatible with the measured value. In addition, this model
shows that the interface width is equal to the correlation length
ξc at the transition

ξc = 3
√

2LC

B
≈ 11 nm. (4)

This value shows that the interface is sharp at the scale of the
droplet that is essential to apply the hydrodynamic model of
Brun et al. to our system.

To end this section we recall that a disclination line is
attached to the meniscus. This line forms because of the
existence of a preferential angle between the director and
the normal to the interface. This line is attached to the
meniscus as shown in directional solidification [26] and has an
elastic energy per unit length of the order of h2(K/h2) = K

independent of h, where K is the Frank constant [27,28].

In our experiments, K ∼ 10−12 N at the transition [25] and
πγh/2 > 10−10 N so that γ h � K . This shows that the
surface tension of the meniscus dominates the line tension
of the disclination line (otherwise the scaling law in h2 for
the relaxation time should not apply). Finally, we note that
the angle between the director and the normal to the meniscus
does not shift significantly from its preferred value because
the anchoring penetration length (of the order of 1 μm [29])
is always small with respect to h. This means that we measure
in this experiment the equilibrium surface tension.

V. CONCLUSION

In summary, our experiment quantitatively confirms the
predictions of the hydrodynamic theory of Brun et al. on
the drop relaxation in microfluidic channels. This result was
obtained by observing the coalescence and the relaxation
of drops of isotropic liquid embedded in thin homeotropic
nematic samples.

Alternatively, we proposed a convenient method to accu-
rately measure the ratio γ /(ηiso + ηc) and thus the equilibrium
surface tension γ , provided the two viscosities are known. We
emphasize that this method is easier to use than the sessile drop
method employed before [13,14] (which requires very precise
measurements of the density of the two phases and needs a
much bigger quantity of the liquid crystal). This method is
also much more precise than that proposed by Smith [15] and
based on the Frenkel relation for the coalescence time τc of
two spherical drops of same radius R [30]:

τc ≈ ηR

γ
. (5)

The problem with this method is that the Frenkel relation is
approximate, involving an average viscosity η badly defined
(in particular when the director field inside the drops is
distorted, which is always the case in spherical drops), and
has difficulty measuring the coalescence time (usually defined
as the time at which the waist disappears). For these reason we
believe that our method is better suited to accurately measure
the nematic-isotropic surface tension.

An extension of this work could be to systematically
measure the nematic-isotropic surface tension in liquid crystals
doped with impurities (such as polymers or colloids) in order to
test recent theoretical predictions about the coupling between
the order parameter and impurity concentration profiles at
the interface [9,10]. Concerning this point, it seems that the
impurity chosen in our work (biphenyl) does not significantly
change the surface tension.
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