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Abstract. New creep experiments under sinusoidal compression/dilation deformation of a homeotropic
sample of smectic-A liquid crystal (8CB) show that its response is nonlinear at very small amplitude of
deformation. This behavior is explained by taking into account the crossing between the edge dislocations
that climb parallel to the layers and the screw dislocations joining the two surfaces limiting the sample.
The activation energy of the crossing process and the density of the screw dislocations as a function of the
sample thickness are estimated experimentally.

1 Introduction

A smectic-A liquid crystal (SmA-LC) is a lamellar phase
with fluid layers and the rod-shaped molecules perpendic-
ular to the layers [1]. At equilibrium the layers are pla-
nar and spaced by the equilibrium period b0. Because of
its structure, a SmA behaves as a solid under compres-
sion/dilation normal to the layers and as a liquid under
shear. The solid behavior was evidenced experimentally
for the first time by Bartolino and Durand in 1977 [2]. In
their experiment, a homeotropic sample was compressed
normal to the layers. The deformation was extremely small
(less than 10−5) and was produced by a piezoelectric ce-
ramic. With this system, these authors directly measured
the compression modulus B of the layers and detected the
plastic relaxation of the applied stress. This relaxation was
attributed to the climb motion of the edge dislocations al-
ways present in the homeotropic samples because of the
angle α —never equal to zero— between the two glass
plates limiting the sample. A remarkable point is that
only the geometrical dislocations survive in well-annealed
homeotropic samples. For this reason, they form at mid-
distance of the glass plates a subgrain boundary with an
average distance between them Λ = b/α as illustrated
in fig. 1. This was shown by direct visualization of the
dislocations under the optical microscope. Two methods
were used to see them: the first one was known for a long
time and consists of working at the smectic-A–smectic-
C phase transition temperature [3]. At this temperature,
the SmC phase (in which the molecules are tilted with
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Fig. 1. Schematic representation of the subgrain boundary
formed by the geometrical edge dislocations present in the sam-
ple.

respect to the normal to the layers) first develops near
the core of the dislocations which thus become visible be-
tween crossed polarizers. A second method, more recent,
consisted of doping the SmA-LC with nanoparticles [4].
In that case, Cottrell clouds [5,6] form around the core of
the dislocations which becomes visible at all temperatures
under the microscope.

Edge dislocations are not the only defects present in
homeotropic samples. There also exists a large density of
screw dislocations (presumably elementary because of the
quadratic dependence of their energy with respect to their
Burgers vector [7]). These defects are usually invisible un-
der the polarizing microscope in samples of SmA-LC but
can be seen in SmC�-LC under crossed polarizers (see, for
instance, refs. [8,9]). In SmA-LC, screw dislocations were
first evidenced in lyotropic systems by observing in TEM
(transmission electron microscopy) the replica of the sur-
face of frozen samples cleaved parallel to the layers [10,11].
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These defects were also observed by confocal microscopy
in SmA samples frozen in liquid nitrogen [12]. There also
exist indirect evidence of these defects in microplasticity,
when a homeotropic sample is submitted to a large de-
formation (up to 10−3 under compression normal to the
layers). Such a deformation can be reached by stacking
several tens of piezoelectric ceramics as in the rheometer
used for this study (for a description, see [13]). In this
case, the experiment shows that the stress relaxes faster
at large deformation than at small one. More precisely,
the stress relaxation time decreases by successive jumps
when the stress increases, revealing an original sequence
of helical instabilities of the screw dislocations present in
the samples [14]. This instability was first observed in a
thick sample (400μm thick) [15] and later in samples a
few micrometers thick by using a force machine [16].

Most of the plasticity experiments mentioned
above were performed with the LC 8CB (4-n-
octylcyanobiphenyl). In this LC, the interactions
between the edge dislocations and screw dislocations were
neglected so far, in particular when they intersect. The
main reason for this is that the energy of the kink formed
on the edge dislocation during the crossing is expected to
be very small because of its screw character (the energy
of a screw dislocation is very small in SmA-LC, probably
ten times smaller than that of an edge dislocation [7]).
This hypothesis seems nevertheless questionable in view
of more recent experiments performed by Lelidis and
coworkers in another material exhibiting a SmA-to-
SmC phase transition [17–19]. In this material, these
authors observed that, at small deformations, the edge
dislocations are pinned on localized obstacles that they
suspected to be screw dislocations. This hypothesis was
reinforced by the calculation in covariant elasticity of the
elastic force between an edge and a screw dislocation.

For this reason, we reconsidered this question of the
crossing between edge and screw dislocations in the LC
8CB by performing new microplasticity experiments at
very small amplitude of deformation. In this regime, the
interaction must be visible if it exists.

The plan of the paper is as follows. In sect. 2, we
present the piezoelectric rheometer, its equivalent mechan-
ical model and its calibration with a known silicon oil.
Section 3 is devoted to the measurements of the elastic
constants and the mobility of edge dislocations in the 8CB
LC at large amplitude of deformation. We show that the
simplified metallurgical model used so far (in particular
in [5]), which neglects the interaction between edge and
screw dislocations, works in this regime. In sect. 4, we
study the rheological behavior of the sample when the
amplitude of deformation is decreased. We show that the
apparent viscosity of the sample increases when the ampli-
tude of deformation decreases, in contradiction with the
simplified model. To explain this nonlinear behavior, we
propose a new metallurgical model taking into account the
presence of obstacles disturbing the motion of the edge dis-
locations. The nature of these obstacles is then discussed
in view of our experimental results. Conclusions are drawn
in sect. 5.

2 The piezoelectric rheometer: equivalent
model and calibration

The piezoelectric rheometer used for this study is de-
scribed in ref. [13]. Several improvements have been made.
The first one is a locking system for each of the differential
screws used to change the thickness of the sample. Thanks
to this new system, the rheometer is more rigid and less
sensitive to mishandling. Another improvement (already
used in ref. [20]) is that the two ovens are now controlled in
temperature independently of each other to within 0.01 ◦C
thanks to two RKC HA400 controllers. The rheometer and
its microscope are also inside a plexiglass box regulated at
22 ± 0.1 ◦C. This is important to improve the mechanical
stability of the rheometer during the measurements, in
particular at low deformation (thickness variations of the
order of the layer thickness) and low frequency (down to
10−2 Hz). In addition, each oven is now closed with a sap-
phire window in order to decrease the thermal gradient
inside the sample. With this new protection, the temper-
ature is homogeneous to within ±0.02 ◦C over the whole
surface of the sample. Circular 3mm thick λ/4 glass plates
from Edmund Optics are used to prepare the sample. The
upper plate has a diameter of 10mm and the bottom one
a diameter of 12.5mm. Both are treated for homeotropic
anchoring with the Merck silane ZLI 3124. The solvent
used to dissolve the silane is a 2:1 mixture of toluene and
dichloromethane. In practice the glass plates are dipped in
the silane solution and then rapidly removed in order that
the solution dewets the surface. If traces of silane remain
on the glass, they are removed by gently polishing the sur-
face with an optical paper. The process is then repeated
until the glass dewets perfectly. In this way a very strong
homeotropic anchoring is achieved. The initial thickness of
the sample and the angle α between the two glass plates
are measured before filling with a fibre optic spectrometer
(USB 650-Ocean Optics). The former is known to within
±0.2μm and the second to within ±10−5 rad. Once the
cell is filled with the LC, the thickness and the angle can
be changed independently thanks to the three differential
screws and the ATA 101 Schaevitz LVDT sensor used to
measure the thickness variation of the sample. A lock-in
amplifier Stanford SR850 is used to excite the ceramics
and measure the sample deformation and its phase shift
with respect to the excitation. Finally, a Labview program
allows one to control the lock-in amplifier and the two
temperature controllers and to generate automatic ramps
of amplitude (frequency) at fixed frequency (amplitude).
Note that between each ramp of amplitude or frequency,
the sample is melted in the nematic phase. This is impor-
tant, in particular when the microstructure of the sample
changes, which may happen in some of our experiments in
which the onset of the undulation instability of the layers
is overcome. The sample is then cooled down to the tem-
perature chosen for the measurement. The cooling must
be very slow (in practice we choose −0.1 ◦C/min) because
the sample slightly dilates by about 0.2μm/◦C when it
is cooled down. This precaution is essential to avoid the
undulation instability of the layers and the nucleation of



Eur. Phys. J. E (2018) 41: 73 Page 3 of 11

k2

k1

sample

δd(t)

a(t)

u(t)

ce
ra

m
ic

s

LV
D

T
d

Fig. 2. Equivalent mechanical model of the rheometer.

focal parabolas which would change the microstructure of
the sample.

From a mechanical point of view, the rheometer can be
modeled by two springs of force constants k1 and k2 in se-
ries with the sample (fig. 2). In practice, the displacement
u(t) is imposed by three stacks of piezoelectric ceramics
and the displacement a(t) is measured with the Schaevitz
sensor. The displacements u(t) and a(t) (rigorously, its
first harmonic) and their phase shift Φ are measured with
the lock-in amplifier when a sinusoidal deformation is im-
posed to the sample. In this case, u(t) = u0 sin(ωt) and
a(t) = a0 sin(ωt + Φ), with u0 ≈ 20 nm when a sinusoidal
voltage V of 1Vrms is applied to the ceramics.

To measure the two constants k1 and k2, we used the
silicon oil 47V10000 (Bluestar silicones). At low frequency
(in the terminal regime), this oil behaves as a Maxwell
fluid of viscosity η and elastic modulus G (with τ = η/G
the viscoelastic relaxation time). In this case, the motion
equations read

σ = k1(u − a) = k2(a − δd), (1)

σ =
3
2

R2

d2

(
G′′

ω

δ̇d

d
+ G′ δd

d

)
, (2)

where G′ and G′′ are the elastic and loss moduli:⎧⎪⎪⎨
⎪⎪⎩

G′ =
ητω2

1 + ω2τ2
,

G′′ =
ηω

1 + ω2τ2
.

(3)

Solving these equations gives the amplitude ratio a0/u0

and the phase shift Φ [20]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0

u0
=

√
(1 + βC)2ω2

r + C2ω2

(1 + β + βC)2ω2
r + (1 + C)2ω2

,

tan(Φ) = − ωωr

(1 + βC)(1 + β + βC)ω2
r + C(1 + C)ω2

,

(4)
where C = k1/k2 and

β =
3R2

2k1d3
G′, (5)

ωr =
2k1d

3

3R2

ω

G′′ . (6)
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Fig. 3. Rheological curves measured at 25 ◦C with the silicon
oil 47V10000 at d = 103 μm and d = 23 μm. The solid lines
show the best fits with the model.

These formulae can be used to fit the experimental
data obtained with the silicon oil. In practice, we measured
the experimental curves a0/u0(f) and Φ(f) (with ω =
2πf) at three different thicknesses: d = 27, 53 and 103μm,
and we then fitted together the six curves obtained by
taking k1, C and τ as fit parameters with η = 100P. This
procedure led to C = 0.038, k1 = 4.22 108 dyn/cm3 and
τ = 4.4 10−3 s. This value of τ is in very good agreement
with the fact that this oil becomes shear-thinning above
a typical shear rate of 200 s−1, which is indeed very close
to 1/τ . An example of experimental curves is shown with
its fit in fig. 3.

In the next two sections, we present our experimental
results obtained with the LC 8CB (from Frinton Labora-
tories, USA). For this LC we measured TNA = 33.33 ◦C.
All of our experiments were performed at T = 32.00 ◦C
with an angle α = 10−3 rad. This angle was chosen twice
larger than in our previous work [5].

3 Microplasticity at large deformation

In this section, we restrict ourselves to the large-amplitude
regime in which the interactions between the edge and
screw dislocations can be neglected. The amplitude of
deformation must nevertheless be not too large to avoid
both the helical instabilities of the screw dislocations and
the undulation instability of the layers [21] rapidly fol-
lowed by the nucleation of focal parabolas [22]. If these
conditions are fulfilled, the microstructure of the sam-
ple remains unchanged during the experiments (no nu-
cleation of new dislocations) and the curves measured at
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Fig. 4. Three examples of curves measured in the large-
deformation regime. In (a) d = 50 μm and V = 9Vrms (u0 ≈
180 nm); in (b) d = 100 μm and V = 5 Vrms (u0 ≈ 100 nm); in
(c) d = 200 μm and V = 2.25 Vrms (u0 ≈ 45 nm). Note that
the curves in (c) have been measured at both decreasing and
increasing frequencies. The solid lines are the best fits with
the simplified model neglecting the interactions with the screw
dislocations.

increasing frequency must perfectly superimpose with the
curves measured at decreasing frequency. In practice, we
determined that the maximum operable voltage satisfy-
ing this criterion is close to 9Vrms at 50μm, 5Vrms at
100μm and 2.25Vrms at 200μm. Three curves measured
at these thicknesses and these voltages are shown in fig. 4.
Note that in fig. 4(b), the points measured at increasing
frequency superimpose with those found at decreasing fre-
quency.

To model these curves, we assume that the stress re-
laxes inside the sample because of the climb of the edge
dislocations. In this model, each dislocation moves at ve-
locity v = mσ, where m is its mobility. Let x be the dis-
tance covered by each dislocation at time t. Because of
the motion of the dislocations, the stress σ relaxes and is
given by

σ = B
δd

d
− B

αx

d
. (7)
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Fig. 5. Constant C′ as a function of the thickness d. The value
reported at d = 0 is the value of C measured with the silicon
oil. The other points are averages over several measurements
in the large-amplitude regime. The solid line is a linear fit.

Knowing that v = dx/dt = mσ, we obtain after elimina-
tion of x from eqs. (1) and (7):

ωc(u − a) = (1 + C ′)
da

dt
− C ′ du

dt
, (8)

where ωc = 2πfc = k1mα is a stress relaxation frequency
independent of the thickness and C ′ = C+k1d/B. Solving
the previous equation for a sinusoidal deformation yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0

u0
=

√
ω2

c + C ′2ω2

ω2
c + (1 + C ′)2ω2

,

tan(Φ) = − ωωc

ω2
c + C ′(1 + C ′)ω2

.

(9)

The best fit of the experimental curves of fig. 4 gives
C ′ = 0.184 and fc = 0.082Hz for d = 200μm, C ′ = 0.11
and fc = 0.082Hz for d = 100μm and C ′ = 0.095 and
fc = 0.079Hz for d = 50μm. In agreement with the
model, fc does not depend on the thickness while C ′

increases linearly with the thickness (fig. 5). From the
value of fc and the slope of the curve C ′(d) we calculate
m = 1.2 10−6 cm/P and B = 5.4 107 dyn/cm2. These two
values are in excellent agreement with the values given in
ref. [5] at the same temperature, but measured with an
angle α twice as small. This good agreement at two dif-
ferent angles proves once again that the geometrical edge
dislocations are well responsible for the relaxation of the
elastic stress and that the simplified model neglecting the
interactions with the screw dislocations can be used in the
large-amplitude regime. We also emphasize that the mo-
bility found here is in excellent agreement with the value
of the mobility obtained from the direct observation of the
dislocation dynamics in thick free-standing films [23–25].

To complete these measurements, we measured the
penetration length λ =

√
K/B, where K is the curva-

ture modulus of the layers. The measurement was done
at 10Hz. At this frequency, the dislocations are almost
“frozen” and contribute very little to the deformation of
the sample. Figure 6 shows the ratio a0/u0 as a function
of the maximum stress σmax that the sample experiences
during the oscillations. This stress is calculated from the
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formula

σmax = k1a0

√
1 +

u2
0

a2
0

− 2 cos Φ
u0

a0
. (10)

For each thickness there exists a stress σc below which the
ratio a0/u0 is constant and above which it increases. This
increase is due to the undulation instability of the layers
and the nucleation of focal parabolas in the sample [22]
(the arrows in the figure mark at which stresses the focal
parabolas become visible in the microscope). In the inset,
the stress σc is plotted as a function of the reciprocal of the
thickness 1/d. As expected, σc is inversely proportional
to d in agreement with the calculation of the onset of
instability which gives σc = 2πBλ/d [21]. From the slope
of the curve and the value of B given above we deduce
λ = 1.0 nm and K = 5.4 10−7 dyn. This value is again in
good agreement with our previous measurements [26].

4 Microplasticity at small deformation

4.1 Experimental results

Thanks to the improvements made to our rheometer, we
were able to explore the plastic behavior of the smectic
phase at smaller deformations than in our previous ex-
periments. Doing this, we realized that the apparent sam-
ple viscosity increases when the amplitude of deforma-
tion decreases. This can be seen in fig. 7 showing typi-
cal rheological curves measured at different voltages and
thicknesses. These graphs show that the response of the
smectic changes when the amplitude of deformation de-
creases, which is in contradiction with the previous linear
model. More precisely, the smaller the thickness, the faster
the curves a0/u0(f) decreases when f increases, while the
minimum of the curves Φ(f) shifts toward the low fre-
quencies. This is a clear indication of an hardening of
the sample. A good way of quantifying this effect is to
fit the curves with eqs. (9) of the simplified model. Sur-
prisingly, the fits remain correct at all frequencies and

lead to unchanged values of C ′ (fig. 8(a)) whereas the
values of fc decrease when the amplitude of deformation
decreases while saturating towards a single value (inde-
pendent of the thickness) at large amplitude (fig. 8(b))
(as predicted by the simplified model). The fact that the
measured elastic modulus does not change even at very
small amplitude of deformation and that the curves can
still be fitted with the simplified model at low frequency
clearly indicates that the edge dislocations in 8CB are
not strongly pinned on obstacles as in the experiments
of Lelidis et al. [12, 17–19]. This is also compatible with
our direct observations of the edge dislocations when they
are decorated with gold nanoparticles [5] and move slowly
under the action of a temperature change. On the other
hand, the fact that fc decreases at small amplitude clearly
indicates that their mobility decreases, which means that
obstacles disturb their motion. As there is no measurable
yield stress in our system, we must assume that these ob-
stacles can be overcome by thermal activation. This led
us to develop the following model.

4.2 Dislocation mobility in the presence of obstacles

To calculate the average mobility of the dislocations, we
suppose that each dislocation is held up by a forest of
obstacles of size h at average distance L apart. In other
words, 1/L2 is the number of obstacles per unit surface
area in the plane of the sample. Let ΔE be the energy
required to cause the dislocation to cross an obstacle.
During the crossing, the dislocation line sweeps out an
area Dh and the applied stress does work Dhbσ by de-
noting by D the average distance between the obstacles
along the line (fig. 9). This distance D can be calculated.
Two regimes must be considered: the low-stress regime in
which D varies as 1/σ1/3 as shown by Friedel [27] and
the large-stress regime in which D = L as shown numer-
ically by Foreman et al. [28]. We will show later that, in
our experiments, we are always in the limit D = L. For
this reason and to simplify the discussion, we will assume
from now on that D = L. This results in an activation
energy U+ = ΔE−Ωaσ, where Ωa = Lhb is an activation
volume. If ΔE is close to kBT , the dislocation can jump
backwards the obstacle, which cancels the previous jump
in the “good” direction. During this process, the activation
energy is U− = ΔE + Ωaσ. As a consequence, the dislo-
cations jumps in the “good” direction with the frequency
ν0e

−U+
and in the “bad” direction with the frequency

ν0e
−U−

, where ν0 is an attempt frequency to determine.
The average frequency with which the dislocation jumps
the barrier in the “good” direction is thus

ν = ν0

(
e−U+ − e−U−

)
= 2ν0e

−ΔE/kBT sinh(Ωaσ/kBT ).
(11)

The average velocity v of a dislocation is obtained by
noting that it moves a distance L2/D = L (by assuming
L = D) each time it jumps an obstacle (for a demonstra-
tion of this result, see ref. [27]). The resulting velocity is
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Fig. 7. Ratio a0/u0 and phase shift Φ as a function of frequency f . The sample thickness (in μm) and the voltage applied to
the ceramics (in Vrms) are given in the upper right corner of each graph (with u0 ≈ 20 nm for V = 1Vrms). The solid lines have
been numerically calculated from our theoretical model with the screw dislocations (see sect. 4.3) by taking A = 0.16 dyn/cm2

and Ωa = 2 10−16 cm3 at d = 50 μm, A = 0.25 dyn/cm2 and Ωa = 3.1 10−16 cm3 at d = 100 μm and A = 0.38 dyn/cm2 and
Ωa = 4.8 10−16 cm3 at d = 200 μm. The best fits of the experimental curves with eqs. (9) of the simplified model are not shown
but are very similar to the curves in solid lines visible here.

thus
v =

L

tjump + tclimb
, (12)

where tjump = 1/ν is the time the dislocation takes to
jump an obstacle and tclimb = L/(mσ) the time it needs
to travel the distance L. Finally, this model predicts that
the dislocation moves with a velocity v = meffσ where
meff is a stress-dependent equivalent mobility of the form

meff =
m

1 + A σ
sinh(σΩa/kBT )

, (13)

where A = (2m/ν0L)eΔE/kBT .
The last step is to determine the attempt frequency

ν0. In metallurgy, this frequency is taken as the natural
vibration frequency of a dislocation segment of length L
pinned at its two ends. By assuming that the segment is
along the y-axis, this frequency is obtained by solving the
motion equation

M
∂2x

∂t2
+

b

m

∂x

∂t
− E

∂2x

∂y2
= σb, (14)

where x(y) is the displacement of the segment along the
x-direction (fig. 9). In this equation, M is the mass of the

dislocation per unit length (of the order of ρb2, where ρ is
the mass density [29]) and E is its line tension, equal to the
line energy for an edge dislocation (of the order of Bb2).
From this equation, we can construct two quantities: the

frequency νL = 1
2L

√
E
M ∼ 1

2L

√
B
ρ which would be the nat-

ural vibration frequency of the segment in the absence of
friction and the relaxation rate 1/τdiss = b/mM ∼ 1/mρb,
very large in our system because the climb process is
highly dissipative. In practice, 1/τdiss � νL which means
that the dislocation dynamics is always overdamped. As a
consequence the mass term in the l.h.s of eq. (14) can be
neglected, which leads to the simplified equation

∂x̄

∂t̄
− ∂2x̄

∂ȳ2
= σ̄ (15)

by taking x̄ = x/L, ȳ = y/b, t̄ = t/τb with τb = bL2

mE
and σ̄ = σbL/E. Solving this equation with the boundary
conditions x̄(0, ȳ) = 0, x̄(t̄, 0) = 0 and x̄(t̄, 1) = 0 yields

x̄(t̄, ȳ) =
∑

n odd

4
π3n3

σ̄
(
1 − eπ2n2 t̄

)
sin(nπȳ). (16)
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the fit of the rheological curves with eqs. (9) of the simplified
model as a function of the voltage V applied to the ceramics
(with u0 ≈ 20 nm for V = 1 Vrms). The solid lines are just
guides for the eye.

L

h

D

Fig. 9. A dislocation held up by three obstacles separated by
distance D moves a distance h/2 and sweeps a surface area
hD during the activation process when it cuts through one of
them.

This equation shows that the typical viscous time for
the dislocation to bend under the action of the external
stress is τb/π2. As a consequence, and by analogy with the
Kramers problem of the Brownian motion of a colloidal
particle in a field of force in the large viscosity regime [30],
we propose to take ν0 = π2/τb = π2mE

bL2 as a typical at-
tempt frequency in our system.

m
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d = 50 μm
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   d = 200 μm

Fig. 10. Ratio of the effective mobility over the intrinsic mobil-
ity as a function of the stress for the three thicknesses studied
experimentally.

We can fit now our experimental curves of fig. 6 by
using the new expression of the mobility given in eq. (13).

4.3 Fit of the experimental curves

To fit our experimental curves, we first need to solve the
master equation (8) in which m has been replaced by
meff . This equation can no longer be solved analytically
because meff depends nonlinearly on σ = k1(u − a). On
the other hand, this equation can be easily solved numer-
ically by using Mathematica by taking u(t) = u0 sin(ωt)
and by setting a(0) = 0 as an initial condition. Once the
solution a(t) is found numerically, we need to calculate
the ratio a0/u0 and the phase shift Φ of the first harmonic
of a(t) in the stationary regime (this is what we measure
experimentally with the lock-in amplifier). This is done
numerically by first calculating in the stationary regime
the X and Y components of the first harmonic of our sig-
nal given by {

X = 2〈cos(ωt)a(t)〉,
Y = 2〈sin(ωt)a(t)〉.

(17)

where the 〈. . .〉 denotes a time average. The ratio a0/u0

and the phase shift Φ are then calculated from the formula⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0

u0
=

√
X2 + Y 2

u0
,

Φ = arctan
(

Y

X

)
.

(18)

Doing this, we were able to fit our experimental data
(solid lines in fig. 7) by taking A = 0.16 cm2/dyn and
Ωa = 2 10−16 cm3 at d = 50μm, A = 0.25 cm2/dyn and
Ωa = 3.1 10−16 cm3 at d = 100μm and A = 0.38 cm2/dyn
and Ωa = 4.8 10−16 cm3 at d = 200μm. We emphasize
that for a reason given later, the fits were done by impos-
ing the constraint that the ratio A/Ωa is independent of
the thickness. The curves of effective mobility meff corre-
sponding to these values are shown in fig. 10 as a function
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of the applied stress. As we can see the mobility strongly
decreases below a typical stress that itself decreases when
the sample thickness increases. This typical stress is of
the order of 1200 dyn/cm2 at d = 50μm, 750 dyn/cm2

at 100μm and 500 dyn/cm2 at d = 200μm. These values
roughly correspond to a compression of the sample close
to half a layer. This typical value of the applied stress be-
low which the samples become much harder was already
mentioned in our old creep experiments performed at con-
stant stress [31,32]. On the other hand, our interpretation
of the hardening is now different as we explain in the next
subsection.

4.4 On the internal stress and the nature of the
obstacles

In our previous works [31,32], we suggested that the hard-
ening of our samples at small stress was due to a pinning
of the dislocations in the internal stress field due to the
roughness of the glass plates.

To test this assumption, we imaged the surface of our
silanized glass plates by AFM (atomic force microscopy)
(fig. 11). We observed that, at the micrometer scale, their
roughness is close to nm. On the other hand, their surface
is also scratched with an average distance between the
scratches of a few micrometers for a depth of a few nm.
There are also small dust particles (silane grains?) on the
surfaces of typical diameter 0.2μm and height 4–10 nm
as the one visible in the figure. The average distance be-
tween them is typically 20–50μm. These surface defects,
or islands, also generate stresses in the sample.

To estimate the importance of the roughness of the
plates, we suppose that the surface at z = 0 imposes the
layer displacement u(z = 0) = u0 sin(qx) sin(qy). This cre-
ates an internal stress in the sample of amplitude in the
middle of the sample (at z = d/2 and by neglecting the
presence of the opposite plate):

σi = 2Bλq2u0 exp(−λq2d). (19)

By taking for typical values Λ = 2π/q = 5μm and
u0 = 2nm, we calculate σi ∼ 300 dyn/cm2 in a sample
of thickness d = 50μm. This stress corresponds to a com-
pression of the sample of the order of b/10 which is quite
small. This stress is still smaller at larger thickness be-
cause of its exponential decrease with the thickness. The
question now is to determine whether this stress can block
the dislocations. This is the case only if the dislocations
can bend at a scale of the order of Λ, i.e. if E/Λ is smaller
than σib which imposes Λ > E/σib ∼ Bb/σi. With the
value of σi given before, this gives Λ > 500μm, which is
much larger than the value of Λ taken to calculate σi. That
means that the dislocations cannot bend (this would cost
too much energy) and, consequently, do not interact with
σi. In conclusion, the internal stress due to the roughness
of the glass plates cannot pin the dislocations and can be
disregarded.

We now return to the localized obstacles. Two types
of objects could act as an obstacle.

Fig. 11. Typical topography of the surface of the silanized
glass plates obtained by contact mode atomic force microscopy.
A scratch (along the diagonal) and an isolated dust (which
resembles a tooth) are clearly visible. The height is given in
nm and the horizontal scale in μm.
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Fig. 12. Interaction energy between a dust particle on a plate
and a dislocation in the middle of the sample as a function of
their distance along the x-axis perpendicular to the dislocation.
The distance x is given in units of

√
λd and the interaction

energy in units of Emax
int .

The first ones are localized defects on the surfaces
such as microscopic holes or small dust particles which are
sticked on the surfaces. One example is shown in fig. 11.
From an elastic point of view, this object (here an island)
can be seen as a small dislocations loop. The interaction
energy with an edge dislocation situated in the middle of
the sample (at z = d/2) has been calculated by Lejček [33]
and reads

Eint = Emax
int

√
e

x√
λd

e−
x2
2λd (20)

with Emax
int ≈ BbHδA√

2πed
. In this calculation, the island is at

the origin of the coordinates, H is the height of the island,
δA is its surface area and x is the distance between the
dislocation and the island along the axis perpendicular to
the line. At zero stress, the energy necessary to cross the
obstacle is (fig. 12)

ΔE = 2Emax
int ≈

√
2
πe

BbHδA

d
. (21)

This activation energy is inversely proportional to the
thickness. For this reason, the thicker the sample, the
easier should be the crossing, which is qualitatively ob-
served. By taking typically H = 5nm and δA = πR2 with
R = 0.1μm, we calculate ΔE ≈ 5.4kBT at d = 50μm
and ΔE ≈ 1.3kBT at d = 200μm. In order to deter-
mine whether these obstacles can be responsible for our
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observations, let us calculate the coefficients A and Ωa

of the model for a sample of thickness d = 50μm. Ex-
perimentally, we observed that L ∼ 20μm (or larger).
For these obstacles, h = 4

√
λd (fig. 12) which gives h =

9 10−5 cm at d = 50μm. With these values and by tak-
ing E/b ≈ 1 dyn/cm [26], we calculate A ∼ 0.1 cm2/dyn
and Ωa ∼ 5 10−14 cm3. This value of A is similar to the
experimental one (0.16), but the activation volume is 200
times larger than the measured one (2.7 10−16 cm3). As a
consequence, the obstacles should be spaced by much less
than 1μm for the model to match with the experiments,
which is impossible. The disagreement is still larger at
larger thickness. For these reasons, this explanation must
be discarded.

We now consider the role of screw dislocations. These
defects are known to be very numerous in smectics [8–12,
15,16,32]. Because a kink is produced on the edge disloca-
tion each time it intersects a screw dislocation, the screw
dislocations can be seen as natural obstacles to the prop-
agation of the edge dislocations. This hypothesis was al-
ready proposed by Lelidis, Blanc and coworkers [12,17–19]
to explain the cusps they observe on the edge dislocations
at the AC transition and the jerky motion of the dislo-
cations under compression at small stress. Another rea-
son for this pinning is the presence of a short-range elas-
tic force Fint between the two types of dislocations when
they are very close to each other. This force was calcu-
lated by Lelidis et al. [12] in nonlinear elasticity by taking
into account the anharmonic correction in the expression
of the elastic energy [1]. According to their calculation,
Fint ∼ 2.5 10−7 dyn (2.5 pN) when the dislocations are a
distance b apart by taking B = 5 107 erg/cm3. To deter-
mine whether the crossing with the screw dislocations can
explain our rheological curves in 8CB, let us estimate the
constant A and the activation volume Ωa of the model. Be-
cause the obstacles are screw dislocations, L is the mean
distance between the screw dislocations and h ∼ b, so that

A =
2
π2

bL

E
eΔE/kBT and Ωa = Lb2. (22)

In addition, the activation energy ΔE must be indepen-
dent of the thickness because the crossing is a local pro-
cess. As a consequence, this model predicts that A/Ωa is
also independent of the thickness since it does not depend
on L, an assumption we made to fit our experimental data
and obtain the values of A and Ωa given above. From these
values and eq. (22), we can now calculate L and ΔE on
condition that we know the Burgers vector of the disloca-
tions.

Let us first assume that all the dislocations are elemen-
tary. In this case, b ≈ 3 nm and we obtain L = 22μm at
d = 50μm, L = 34μm at d = 100μm and L = 54μm
at d = 200μm and ΔE = 0.15 eV = 5.9 kBT know-
ing that E/b ≈ 1 dyn/cm at 32 ◦C [26]. In theory, ΔE
must be of the order of Fintb or comparable to the en-
ergy of the kink created on the edge dislocation. For el-
ementary dislocations, Fintb ∼ 7.5 10−14 erg = 2kBT .
As for the kink energy Ekink, it must be of the order of
Escrewb knowing that the kink is of a screw character. In

a smectic-A LC, the energy of a screw dislocation reduces
to its core energy which was found to be of the order of
0.1Bb2 for an elementary dislocation. This value was de-
duced from the measurement of critical stress above which
the helical instability develops [15] (in 8CB, this critical
stress is larger than σc). By taking this value, we calcu-
late Ekink ∼ 0.1Bb3 = 3kBT . These two estimates are
typically twice as small as the experimental value. This
could be due to the approximations made in the model, in
particular in the calculation of ν0. This being, we should
increase ν0 by more than a factor of 10 to decrease the
experimental value of ΔE by a factor of 2, which seems
quite excessive.

A more likely explanation is that the dislocations are
not elementary. This would be surprising for the screw
dislocations because their energy (out of the core) is pro-
portional to b2 (by assuming that their core radius is of
the order of b). This strongly favors elementary screw dis-
locations as confirmed by direct TEM observations [34].
The situation is different for the edge dislocations be-
cause their energy is proportional to b [1, 26, 35]. Be-
cause of this property, these dislocations tend to group
together when the angle α is “large”, as in our experi-
ment (α = 10−3 rad) [1, 2]. It is thus very likely that the
edge dislocations pair up to form dislocations of Burgers
vector b = 2b0. With this new assumption, we calculate
L = 11μm at d = 50μm, L = 17μm at d = 100μm and
L = 27μm at d = 200μm and ΔE = 0.15 eV = 6.6 kBT
knowing that E/b remains unchanged as shown experi-
mentally in [26]. As we can see the value found of ΔE is
almost the same. On the other hand, we predict an ac-
tivation energy twice as large as before because Fint is
proportional to b, which agrees much better with experi-
ments. For this reason, we think that our dislocations are
of Burgers vector b = 2b0.

To conclude this discussion, let us verify that our work-
ing assumption D ≈ L is correct. According to Friedel [27],
the distance D must be larger than L at small stress and
given by formula

D =
[
2EL2

σb

]1/3

. (23)

In our experiments at d = 50μm, σ varies typically be-
tween 1500 and 7000 dyn/cm2 which gives 7μm < D <
12μm by taking L = 11μm. As we can see these values
of D are comparable or smaller than L which is impos-
sible. This means that we are not in the Friedel regime
but rather in a regime of large stress in which L ≈ D
as was shown numerically in ref. [28]. One easily checks
that the same conclusion holds at thicknesses d = 100 and
200μm with the values of L given above. This proves the
validity of our model for the typical stresses used in our
experiment.

Another consequence of this discussion is that the mo-
bility m here measured certainly corresponds to the mo-
bility of edge dislocations of Burgers vector b = 2b0. As
recalled in sect. 3, the value found is in excellent agree-
ment with the value found at smaller angle for elementary
edge dislocations. This observation proves that the mobil-
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ity is the same for dislocations of Burgers vector b = b0

and b = 2b0. This result, already stressed in refs. [31, 32],
was confirmed by direct measurements in free-standing
films of the mobility of dislocations of Burgers vector
b = 2b0 [36] and agrees with the predictions of the hy-
drodynamic model which predicts that m must be inde-
pendent of b [1, 37].

As for the distance between the screw dislocations, it
quite well agrees with the usual values found in the litera-
ture. An interesting point here is that the density of screw
dislocations L−2 decreases more or less as 1/d when the
thickness increases.

From this discussion, we conclude that the edge dis-
locations are probably of Burgers vector b = 2b0 when
α = 10−3 rad and that the decrease of their mobility at
small stress is due to their thermally activated crossing
with elementary screw dislocations.

In the next subsection, we test these conclusions by
repeating the same experiments at a smaller angle, when
the dislocations are elementary. In this case, ΔE must
be smaller, typically twice as small. For this reason, the
crossing with the screw dislocations must be easier and the
sample hardening at low stress must be less important.

4.5 Final test of the model when the dislocations are
elementary

We performed new experiments at d = 100μm and α =
5 10−4 rad. At this angle, the dislocations are elemen-
tary [5]. To test our theoretical predictions, we measured
again the rheological curves at voltages 5, 3 and 1Vrms
(corresponding to u0 = 100, 60 and 20 nm, respectively)
and we calculated the corresponding curves predicted by
the model. The same values of the parameters as the ones
measured previously at d = 100μm were used, except for
ωc and ΔE that were divided by 2 to account the fact
that α and b are twice as small. Note that, in doing so,
we assume that the density of screw dislocations depends
only on the thickness. The curves calculated in this man-
ner (solid lines in fig. 13) are in very good agreement with
the experimental curves. By contrast, the curves calcu-
lated by keeping the same value of ΔE significantly shift
from the experimental ones at low voltages, as we can see
in fig. 13(b), (c). This provides compelling evidence that
the crossing between edge and screw dislocations is more
difficult at α = 10−3 rad than at α = 5 10−4 rad, which we
interpret as due to the probable formation of double dis-
locations of Burgers vector b = 2b0. For completeness, we
show in fig. 14 the shape of the effective mobility curves
predicted for the two types of dislocations, elementary and
double.

5 Conclusions

We have revisited the model of creep by climb of edge dis-
locations in a homeotropic sample of smectic-A LC. Our
measurements show that the samples are more viscous at
low stress than at large one, in disagreement with the

Φ
 (

ra
d)

   
   

   
   

   
 a

 / 
u

Φ
 (

ra
d)

   
   

   
   

   
 a

0
 / 

u
0

0
0

Φ
 (

ra
d)

   
   

   
   

   
 a

0
 / 

u
0

f (Hz)

(a)

(b)

(c)

1.0

0.5

0.0

-0.5

-1.0

0.01
2 3 4 5 6

0.1
2 3 4 5 6

1
2

-1.0

-0.5

0.0

0.5

1.0

0.01
2 3 4 5 6

0.1
2 3 4 5 6

1
2

-1.0

-0.5

0.0

0.5

1.0

0.01
2 3 4 5 6

0.1
2 3 4 5 6

1
2

Fig. 13. (a)–(c) Rheological curves when d = 100 μm and
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Fig. 14. Effective mobility of the edge dislocations predicted
by the model at d = 100 μm. The curve in solid (dashed) line,
calculated by taking ΔE = 3.3kBT (6.6kBT ), corresponds to
elementary (double) dislocations.

standard model. This nonlinear effect can be explained by
introducing a mobility effective for the dislocations which
decreases at low applied stress. This decrease is attributed
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to the crossing with the screw dislocations which are nu-
merous in the samples. A fine analysis of the rheological
data shows that this effect depends on the angle between
the plates because of a tendency of the dislocations to pair
up when the angle increases. Of course, it would be im-
portant to check this point more directly, for instance by
visualizing the dislocations under the microscope thanks
to the introduction of nanoparticles.

It would also be important in the future to understand
why the interaction between the edge and screw disloca-
tions is stronger at the AC phase transition, where a clear
yield stress is observed, even in thick samples. This is sur-
prising because B, and consequently the activation energy
ΔE, are expected to decrease at this transition, which
should favor the crossing between the dislocations.

It would also be interesting to test what happens in
very thin samples as the ones studied by Herke et al. in a
force machine in the sphere-plane geometry. In their ex-
periments with 8CB, these authors mention a large yield
stress. In our opinion, this stress could come from the in-
ternal stress generated by some defects on the surfaces in
the central part of the sample and from the interactions
between the screw dislocations and the giant edge disloca-
tions that should form in the external part of the sample
because of the geometry.

Finally, it would also be important to understand why
the density of screw dislocations decreases when the sam-
ple thickness increases, remembering that in our exper-
iments all measurements were conducted with the same
glass plates and the same surface treatment. We note at
this point that the same tendency was also observed by
Blanc in his samples at the AC phase transition [38].
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