
Unsteady flow and particle migration in dense, non-Brownian suspensions
Michiel Hermes, Ben M. Guy, Wilson C. K. Poon, Guilhem Poy, Michael E. Cates, and Matthieu Wyart 
 
Citation: Journal of Rheology 60, 905 (2016); doi: 10.1122/1.4953814 
View online: http://dx.doi.org/10.1122/1.4953814 
View Table of Contents: http://scitation.aip.org/content/sor/journal/jor2/60/5?ver=pdfcov 
Published by the The Society of Rheology 
 
Articles you may be interested in 
Rheology of non-Brownian particles suspended in concentrated colloidal dispersions at low particle Reynolds
number 
J. Rheol. 60, 47 (2016); 10.1122/1.4935445 
 
Flows of suspensions of particles in yield stress fluids 
J. Rheol. 59, 1449 (2015); 10.1122/1.4934363 
 
Dynamics of the orientation behavior and its connection with rheology in sheared non-Brownian suspensions of
anisotropic dicolloidal particles 
J. Rheol. 55, 581 (2011); 10.1122/1.3569585 
 
Plane Poiseuille flow of a sedimenting suspension of Brownian hard-sphere particles: Hydrodynamic stability and
direct numerical simulations 
Phys. Fluids 18, 054103 (2006); 10.1063/1.2199493 
 
Particle migration in a concentrated suspension flowing between rotating parallel plates: Investigation of diffusion
flux coefficients 
J. Rheol. 49, 1429 (2005); 10.1122/1.2079247 
 
 

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  140.77.242.220 On: Thu, 22 Sep 2016

12:13:39

http://scitation.aip.org/content/sor/journal/jor2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/665573883/x01/AIP/TAInstruments_JORCovAd_1640Banner_01_27_2016/TAInstruments_Jan27_2016.jpg/33722b58693165736c486741447a3563?x
http://scitation.aip.org/search?value1=Michiel+Hermes&option1=author
http://scitation.aip.org/search?value1=Ben+M.+Guy&option1=author
http://scitation.aip.org/search?value1=Wilson+C.+K.+Poon&option1=author
http://scitation.aip.org/search?value1=Guilhem+Poy&option1=author
http://scitation.aip.org/search?value1=Michael+E.+Cates&option1=author
http://scitation.aip.org/search?value1=Matthieu+Wyart&option1=author
http://scitation.aip.org/content/sor/journal/jor2?ver=pdfcov
http://dx.doi.org/10.1122/1.4953814
http://scitation.aip.org/content/sor/journal/jor2/60/5?ver=pdfcov
http://scitation.aip.org/content/sor?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/60/1/10.1122/1.4935445?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/60/1/10.1122/1.4935445?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/59/6/10.1122/1.4934363?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/55/3/10.1122/1.3569585?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/55/3/10.1122/1.3569585?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/5/10.1063/1.2199493?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/5/10.1063/1.2199493?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/49/6/10.1122/1.2079247?ver=pdfcov
http://scitation.aip.org/content/sor/journal/jor2/49/6/10.1122/1.2079247?ver=pdfcov


Unsteady flow and particle migration in dense, non-Brownian suspensions

Michiel Hermes,a) Ben M. Guy, and Wilson C. K. Poon

School of Physics and Astronomy, The University of Edinburgh, King’s Buildings, Peter Guthrie Tait Road,
Edinburgh EH9 3FD, United Kingdom

Guilhem Poy

Laboratoire de Physique, �Ecole Normale Sup�erieure de Lyon, Universit�e de Lyon, 46 All�ee d’Italie,
69364 Lyon Cedex 07, France

Michael E. Cates

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA,
United Kingdom

Matthieu Wyart

EPFL SB ITP PCSL, BSP 29 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland

(Received 12 November 2015; final revision received 4 May 2016; published 12 September 2016; corrected 20 September 2016)

Abstract

We present experimental results on dense corn-starch suspensions as examples of non-Brownian, nearly hard particles that undergo continu-

ous and discontinuous shear thickening (DST) at intermediate and high densities, respectively. Our results offer strong support for recent the-

ories involving a stress-dependent effective contact friction among particles. We show, however, that in the DST regime, where theory might

lead one to expect steady-state shear bands oriented layerwise along the vorticity axis, the real flow is unsteady. To explain this, we argue

that steady-state banding is generically ruled out by the requirement that, for hard non-Brownian particles, the solvent pressure and the

normal-normal component of the particle stress must balance separately across the interface between bands. (Otherwise, there is an unbal-

anced migration flux.) However, long-lived transient shear bands remain possible. VC 2016 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4953814]

I. INTRODUCTION

Newtonian liquids, such as water, ethanol or honey, are

each characterized by a well-defined, shear-rate-independent

viscosity g. In contrast, many complex fluids, such as partic-

ulate suspensions, surfactant solutions, and polymer solu-

tions, show shear thinning and/or shear thickening, so that

their steady-state viscosity depends on the shear rate _c. The

shear stress plotted as a function of shear rate rð _cÞ ¼ gð _cÞ _c,

known as the flow curve, then has a slope less than or greater

than unity, for shear thinning or shear thickening, respec-

tively, when plotted on logarithmic axes.

In extreme shear thinning or thickening systems, there

can in principle appear regions of the flow curve where

@rð _cÞ=@ _c < 0 for a range of flow rates. Homogeneous flow

is then mechanically unstable [1]. In many such cases, there

exist inhomogeneous, shear-banded states that allow the sys-

tem to flow steadily in time despite this instability. These

involve either bands oriented layerwise along the vorticity

direction with the same shear rate but different shear stresses

(vorticity banding), or bands oriented in the gradient direc-

tion with the same shear stress but different shear rates (gra-

dient banding). There are cases, however, where such

banded flows are themselves unstable, giving rise to time-

dependent flows with fluctuating shear stresses and rates.

These unsteady flows vary from relatively simple oscillations

to fully developed chaos; shear-band-like features may or

may not remain detectable.

These chaotic flows arise from viscoelastic instabilities at

essentially zero Reynolds number (negligible inertia), in con-

trast to conventional fluid turbulence; they are sometimes

called “rheochaos.” Viscoelastic instabilities are relatively

well studied in entangled micellar systems. In that context,

they are often interpreted in terms of an interplay between a

slow fluid relaxation time (Maxwell time, sM) and an even

slower process that modulates sM [2]. However, rheochaos

can equally arise in systems without this timescale separa-

tion, such as simple nematic fluids [3].

In this paper, we present detailed experimental evidence

for unsteady flow (leading to rheochaos) in a shear-

thickening suspension and explore the various regimes that
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emerge. The suspension is granular, rather than colloidal,

comprising particles that are large enough for Brownian

motion to be negligible. Its flow curve is predicted theoreti-

cally to be nonmonotonic, in a way that might normally be

expected to support steady shear bands. Without Brownian

motion, however, we will argue that such bands are generi-

cally disallowed, so that the flow is unsteady.

Perfectly hard spheres have functioned as a conceptual

model for the rheology of particulate suspensions for a long

time [4,5] and continue to yield many insights, e.g., in the

study of viscosity divergence near glassy arrest [6]. As two

idealized hard spheres approach each other through a fluid

with no-slip boundary conditions, the time taken to drain the

layer of fluid between them (the lubrication film) diverges,

and large “lubrication forces” prevent the particles from ever

making contact. However, if the particles are slightly rough,

or have a finite slip length, they can come into contact when

the lubrication film reaches a thickness comparable to the

surface roughness or the slip length. In practice therefore,

direct contact forces certainly play a role in real “hard-

sphere” suspensions [7], and these contact forces can be

expected, in general, to include static friction.

Surprisingly, at low volume fraction, /, the viscosity of a

suspension of spheres in frictional contact is lower than that

of an identical suspension of smooth spheres [8]. The oppo-

site holds at high /, where frictional contacts have recently

been demonstrated by experiments [9,10], simulations

[11–14], and theory [15] to play a crucial role in shear thick-

ening, and ultimately jamming.

These recent advances formalize and develop earlier

insights from Melrose and Ball (MB). In their simulations of

non-Brownian spheres [16], MB found that the gap between

the surface of particles, d, could fall to molecular dimensions

in a real suspension, giving rise to numerically diverging

lubrication forces (which scale as d�1). MB overcame this

problem by introducing a short-range repulsive force that

stops these pathologically small gaps from forming [17]. In a

real suspension, such repulsion can arise from stabilizing

polymers and/or charges on particle surfaces. Significantly,

MB pointed out that the “small gap problem” would recur

above a stress r? at which the stresses in the system over-

come these stabilizing repulsions. Crucial to recent advances

is the realization that, when the force threshold for a particu-

lar contact is exceeded, its lubrication film may fail immedi-

ately (due to roughness or a finite slip length) allowing the

particles to come into direct frictional contact. Thus the

“onset stress” r? marks a crossover from open, well lubri-

cated (or sliding) contacts between particles to direct, fric-

tional (or rolling) contacts.

Developing this insight, Wyart and Cates [15] (WC) have

constructed a phenomenological theory for the steady

flow of shear-thickening particulate suspensions. They take

all particle interactions to be lubricated (frictionless) when

r� r? so that the system is quasi-Newtonian with a viscos-

ity that diverges at random close packing /0 ¼ 0:64.

However, when r� r?, all contacts are frictional and the

system is again quasi-Newtonian, but now with a viscosity

diverging at some lower volume fraction, /m < /0, whose

value depends on the interparticle static friction coefficient,

lp [12]. The transition between these two regimes on

increasing r causes shear thickening.

This scenario resolves a longstanding puzzle in dense sus-

pension theory. Strictly hard particles can have no stress

scale r?, and, without Brownian motion, also have no time-

scale at rest. Hence, all stresses must scale linearly with _c
[18]. (This includes nonvanishing normal stresses, which is

why we describe the two limiting branches as quasi-

Newtonian, not Newtonian.) Thus, in the absence of

Brownian motion and inertia, shear-thickening requires

some deviation from strict hard sphere behavior. The key

idea of recent work is that this deviation provides, in effect,

a stress-dependent interparticle friction [11,15,19].

In this paper, we study the rheology of corn-starch sus-

pensions below and above /m. Above /m, complete jamming

is expected, surprisingly, however, we show that flow is still

observed, but is always unsteady, and shows rheochaos at

high enough stress. This relates to the fact that you can run,

but not stand still, on a pool of corn starch. Similar unsteadi-

ness is seen for /c < / < /m, so that the entire discontinu-

ous shear thickening (DST) region is affected. After

describing these results, we give arguments that unsteady

flow should, on theoretical grounds, be a generic feature of

dense particulate suspensions in the DST regime.

II. METHODS AND SETUP

Rheological measurements were performed with a

stress-controlled rheometer (DHR-2, TA Instruments) with

hatched parallel plates, R¼ 40 mm diameter [Figs. 1(a)

and 2] or with a Couette cell (inner diameter of 18 mm,

outer diameter 21 mm) and roughened boundaries [Fig.

1(b)] at a temperature of 20 �C. We obtained the raw torque

and strain data at a rate of �103 Hz using the TA software

tool “ARG2AuxiliarySample.” The sample was imaged

from the side using a digital camera at a frame rate of 30

fps using a 16 mm macro-objective.

We performed experiments on corn starch (Sigma

Aldrich, unmodified regular corn starch containing approx.

73% amylopectin and 27% amylose [S4126]; diameter

�14 lm, polydispersity � 40% from static light scattering)

dispersed in a mixture of 50 wt. % water and 50 wt. % glyc-

erol (viscosity gs¼ 6 mPa s, density qs¼ 1.17 g cm�3) at var-

ious concentrations. The particles swell in our solvent, so

that we cannot access the volume fraction 0. We therefore

quote mass fractions /w. Samples were freshly mixed for

each experiment and rested for several minutes before load-

ing into the rheometer. Sedimentation and evaporation begin

to influence the rheology after �30 min with parallel plates;

we discard data taken after this time.

Flow curves, Fig. 1, were obtained by increasing the tor-

que, M, continuously with a logarithmic rate from 0.1 to

1000 Pa over 300 s. Most samples show edge fracture at

stresses between 100 and 1000 Pa; we do not show any data

points for which this has happened. In parallel plate work,

we report the shear rate at the rim of the plates _c ¼ R _u=H,

where H is the gap height, and the apparent shear stress,

r ¼ 2M=ðpR3Þ.
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III. RESULTS

Figure 1 shows flow curves measured at different mass

fractions, /w (see caption), reported as the reduced shear

stress r/p?, versus the reduced shear rate, _cgs=p?. Here, p? is

the onset pressure for the formation of frictional contacts,

related to the onset stress through r? ¼ lð/Þp?, see Sec. IV.

(Note that we control the shear stress, plotted on the vertical

axis, and measure the shear rate, on the horizontal axis.) At

/w < /w
c � 0:465, we observe continuous shear thickening

(CST) above an onset pressure p?¼ 20.0 6 5 Pa to a high-

viscosity quasi-Newtonian state (blue curves in Fig. 1). The

steepness of the shear-thickening part of the flow curve

increases with /w until, at /w
x ; d _c=dr ¼ 0 beyond which the

sample discontinuously shear thickens. In contrast to the

continuous case, where the flow is steady throughout the

flow curve, we now observe large shear-rate fluctuations

above the critical stress, resulting in considerable spread in

the data. These fluctuations are also present in constant stress

experiments (as shown in Fig. 2) and remain present for long

times (at least 30 min). Such large fluctuations arise as soon

as the measured flow curve starts bending backwards.

(Hence, there is no inconsistency in the apparent negative

slopes of the empirical, averaged, “flow curves.”)

Just above /w
c [black curve, Fig. 1(a), measured between

hatched parallel plates], there is a narrow concentration

range in which the system can reach a flowing quasi-

Newtonian state at high stresses, as previously reported [20],

although we observe severe deformations of the meniscus in

this regime. Above a second critical concentration /w
m

� 0:47 [red curve, Figs. 1(a) and 1(b)], no such quasi-

Newtonian regime is found even at the highest observable

stresses; instead the flow is always erratic. We observe very

similar behavior in a Couette geometry, Fig. 1(b). These

time-averaged observations map rather directly onto the WC

theory of steady-state shear thickening if we identify /w
c

with /c, the point where sigmoidal flow curves emerge, and

/w
m with /m, the jamming point for frictional particles. On

the other hand, the theory does not capture the magnitude of

the shear thickening completely, most likely due to the wide

size and shape dispersity in corn-starch, or nonhard interac-

tions, which also give rise to a small yield stress (not

shown).

Significant differences between experiments and theoreti-

cal expectations (see Sec. IV) arise for / > /m. Here, WC

theory leads us to expect that no steady flow is possible

above a threshold of stress, even with shear bands present,

because there is no upper branch to the flow curve. However,

at low stresses, steady flow is possible on the lower branch,

but beyond it, the only steady state either has coexistence of

low and high stress bands, both at _c ¼ 0, or is jammed

homogeneously (again with _c ¼ 0). Thus, one might expect

the system to be able to support a relatively modest static

load without flowing at all.

However, these WC scenarios refer to steady states.

Experimentally, we find instead that the system does flow at

high stresses in this regime, but flows unsteadily. The phe-

nomenology of this “unexpected” flow at / > /m is com-

plex. To begin to explore it, Fig. 2(f) shows the time-

averaged flow curve, as well as the measured fluctuations, in

a sample at /w¼ 0.50, corresponding to a volume fraction

just above /m. At the lowest applied shear stresses, r< 0.lp?,
the shear rate fluctuates only a little around a well-defined

average [see Fig. 2(a)]. The axial stress measured on the top

plate, N, is close to the noise level of the transducer [21].

The meniscus at the air-sample interface remains smooth,

shiny, and undisturbed. We observe a drift in the shear rate

after long times (hours), presumably due to particle migra-

tion, sedimentation, or evaporation.

For 0:1r? � r � 0:2p?, region B in Fig. 2(f), the flow is

steady for seconds, but is punctuated by sudden drops in

_cðtÞ; Fig. 2(b). We refer to these events as “jams,” and argue

that they are related to the formation of locally solid regions

within the suspension. During a jamming event, _c (purple

and red lines) drops rapidly, with a concomitant positive

spike in the axial stress (black lines), before increasing

slowly back to the steady-state value.

FIG. 1. (a) Apparent shear stress rxy vs rim shear rate _c for corn-starch sus-

pensions at mass fractions /w¼ 0.45, 0.46, 0.465, 0.47, 0.50, and 0.52 from

right to left. Data represent upward stress sweeps measured between hatched

plates. Stress is reported in Pa (right vertical axis) and in units of the onset

pressure for shear thickening, p?¼ 20.0 Pa (left vertical axis). Shear rate is

reported in s�1 (top horizontal axis) and reduced units _cgs=p? (bottom hori-

zontal axis). Dashed lines: prediction of Eq. (5) at different / (0.50, 0.525,

0.54, 0.565, 0.585, and 0.595) with /m¼ 0.55 and (/RCP¼ 0.66; these volume

fractions were chosen to match experimental data. (b) The same as above but

measured using a Couette geometry, mass fractions /w¼ 0.47, 0.50, and 0.53

from right to left. The dashed lines are predictions from theory for /¼ 0.49,

0.53, 0.545, 0.565, 0.595, and 0.615.
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While the jamming events in region B are sparsely dis-

tributed and seem to occur randomly in time, they become

very regular with a well-defined frequency at r � 0:2p?, re-

gime C Fig. 2(f). This is visible macroscopically as periodic

jerks of the rheometer top plate. The minimum shear rate

reached during a jamming event is variable, Fig. 2(c), while

the shear rate in the flowing state is approximately the same

and corresponds to the right-hand limit of the horizontal lines

in Fig. 2(f). These oscillations remain over long times and

only change over the course of hours (presumably as the

sample dries out). The frequency of the oscillations increases

linearly with the applied stress, Fig. 3(a). Each sudden

decrease in _c is accompanied by a localized deformation of

the air-sample interface. A small area of the interface compa-

rable to the gap height bulges out slightly, while the sur-

rounding area curves slightly inward. The interface recovers

a smooth profile as the plate accelerates back to the steady-

state value. Note that these localized jams are not an artifact

of the cross-hatched plates; they start to appear at the same

stresses with smoother surfaces, albeit in the presence of sig-

nificant wall slip, as well as in Couette geometries [Fig.

4(b)].

In region D, Fig. 2(f), periodic jamming coexists tempo-

rally with bursts of unpredictable fluctuations, as shown in

Fig. 2(e). During the periodic intervals, the air-sample inter-

face behaves the same as in region C, with short-lived, static

jammed regions appearing at the same time as the drop in

shear rate. During the random bursts, more irregular surface

deformations are observed that are long lived and move

around the interface opposite to the direction of flow [see

Figs. 3(b)–3(d)]. Usually, only one or two transient deforma-

tions appear during each intermittent event and disappear

when the periodic oscillations resume.

At the highest stresses r=p? � 1, in region E, Fig. 2(f), the

periodic jamming and unjamming are absent, and only

random-looking fluctuations are observed, Fig. 2(e). This

behavior, and the series of events at lower stresses that pre-

cede it, are similar to the development of rheochaos as

observed in micellar systems [2]. We leave it to future work

to establish whether the flow is really chaotic in a technical

sense; for our purposes, what matters is that it is unsteady,

not readily predictable, and without obvious periodic fea-

tures. In region E, the first normal stress difference is perma-

nently large and positive and anticorrelated with the shear

rate. Very recently, unstable flow, sudden jams and a transi-

tion to what appears to be rheochaos have been observed in

2D computer simulations of inertial frictional grains [22].

Although the origin of the sigmoidal flow curves is different,

FIG. 2. (a)–(e) Apparent shear rate as a function of time for increasing stress, on the left y axis. The thin black lines show the normal pressure nf/rxy on the

right y axis. (f) Apparent shear stress as a function of rim shear rate _cR in absolute and reduced units for corn starch at a mass fraction of /w¼ 0.52, corre-

sponding to a volume fraction just above /m in WC theory. Horizontal lines: raw _cR data at different applied rxy in the stable (dark blue), periodic (red), inter-

mittent (green), and chaotic (cyan) regimes. Symbols: average _cR.
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the types of unstable flow observed there are very similar to

the ones reported here.

We observe the same transition sequence in a Couette ge-

ometry as with parallel plates, although the onset stress for

unsteady flow is lower in a Couette geometry than between

parallel plates, Figs. 4(a)–4(e). We observe the same

sequence of phenomena for other volume fractions above

/m, whereas for samples just below /m, we observe an addi-

tional steady flow regime at high stress, Fig. 4(j). At lower

volume fractions, we do not observe shear rate fluctuations

at any applied stress, Figs. 4(k)–4(o).

IV. THEORY

In this section, we will summarize the steady-flow theory

outlined in [15]. We will then explore what this means for

the stability of the flow of shear thickening suspensions. WC

describe the rheology of dense non-Brownian suspensions

with a jamming volume fraction, /JðpÞ, that depends on p,

the particle pressure, defined via the trace of the particle con-

tribution to the stress. This /JðpÞ evolves smoothly from

/JðpÞ ¼ /0 to /Jð1Þ ¼ /m as the fraction of frictional con-

tacts f goes from 0 to 1

/JðpÞ ¼ /mf ðp=p?Þ þ /0½1� f ðp=p?Þ�: (1)

Here, f, which is dimensionless, can depend only on the ratio

of p to the onset stress, as written above. The precise form of

f is inessential, but a stretched exponential

f ¼ exp ½ð�p?=pÞb� (2)

gives good agreement with experiments [9] and simulations.

At the macroscopic level, the particle pressure / is related

to the shear stress r through a stress ratio or macroscopic

friction coefficient lð/Þ (not to be confused with lp as

defined above)

r ¼ lð/Þp; (3)

where l is taken by WC to depend only on /. This involves

a simplification, since in principle the macroscopic friction

coefficient l could certainly also depend on the state of mi-

croscopic friction and hence on f [15,23,25]. We return to

this issue below. This relation between stress and pressure

allows us to write Eq. (1) as function of stress instead of

pressure

/JðrÞ ¼ /mf ðr=r?Þ þ /0½1� f ðr=r?Þ�; (4)

where r? ¼ lð/Þp?.
Finally, the suspension viscosity g ¼ rð _cÞ _c is known to

diverge as the jamming transition is approached [23]. This

divergence is related to the explosion of velocity fluctuations

caused by excessive crowding [26,27] and can be computed

in simple models [28]. In WC, this effect leads to a diver-

gence of viscosity at /J(P) modeled as

g r;/ð Þ ¼ r= _c ¼ gs 1� /
/J r=l /ð Þð Þ

� ��a

(5)

with an exponent estimated as a¼ 2. This leads to S-shaped

flow curves, whose likely role in shear thickening was earlier

identified in [29].

Figure 5(a) shows the reduced suspension viscosity,

gðr;/Þ=gs, predicted by the WC model as a function of

FIG. 3. (a) The frequency of the oscillation as a function of the applied

stress for a sample at /w¼ 0.50 measured between hatched plates. (b)–(d)

Pictures of the deformation of the interface during the intermittent regime d

at /w¼ 0.50 between hatched plates. In the photos, the front of the cone

rotates to the left, the gray bottom plate is stationary, and a deformation of

the interface (highlighted by a red ellipse) moves to the right.
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FIG. 4. (a)–(e) Apparent shear rate as a function of time measured during a continuous increase in shear stress in a Couette geometry at /w¼ 0.50. (f)–(j)

Same as (a)–(e) but in a parallel plate geometry at /w¼ 0.465. (k)–(o) Same as (a)–(e) but in a parallel plate geometry at /w¼ 0.45.

FIG. 5. (a) Relative viscosity g=gs vs reduced shear rate _cgs=p? at different volume fractions / (as labeled) predicted by the theory of Wyart and Cates [15],

[Eq. (5)]. We take /m ¼ 0:56; /RCP ¼ 0:64; b ¼ 1 from recent experiments [9]. The unstable regimes are marked in thick (red) lines. (b) Corresponding flow

curves (shear stress as a function of shear rate). (c) The /-independent stress ratio (or effective macroscopic friction coefficient) in the y- (gradient-) direction,

lyy ¼ rxy=ryy, used to obtain these plots. Black solid line: derived from Boyer et al. [23], applicable up to /m; gray line: a plausible extrapolation to higher /
based on 2D simulations [24]. (d) The flow curves dxyð _cÞ=p? at different / (blue lines) plotted again, now against a linear horizontal axis, and compared with

the normal stress in the y-direction �ryyð _cÞ=p? (red lines) calculated using the expression for l, shown in (c).
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reduced shear rate _cgs=r
? using /0 ¼ 0:64;/m ¼ 0:56 and

b¼ 1. For / somewhat less than /m, the system shear thick-

ens continuously between the two quasi-Newtonian regimes.

The slope dg=d _c increases with / until, at a critical

/ ¼ /c � 0:55, gð _cÞ becomes vertical. For / > /c, gð_cÞ
contains a region of negative slope and develops a sigmoidal

shape, while tending toward quasi-Newtonian regimes at

both low and high stresses. Above a second critical volume

fraction set by / ¼ /m, the backward-bending part of the

flow curve meets the vertical axis and there is no longer a

flowing branch at high stresses. The corresponding rð_cÞ
curves are shown in Fig. 5(b).

As / is increased, the theory predicts first CST, then DST

between two flowing branches each of finite viscosity [20],

and finally DST from a flowing branch to a jammed branch

that cannot flow at finite y without some sort of fracture [30].

This last regime, which arises for />/m, is called

“complete jamming” [31]; in it, the putative upper branch of

the flow curve rð _cÞ runs straight up the vertical axis. The

WC model fits recent gðr;/Þ data on suspensions of steri-

cally stabilized polymethyl methacrylate (PMMA) particles

whose interactions closely approach the hard-sphere limit

[9]. The predicted sigmoidal flow curves, although pre-

empted by instability in bulk steady flows, have since been

observed, at least transiently, in experiments and simulations

of nearly hard non-Brownian particles [13,32].

At high volume fractions, in the complete jamming re-

gime, the WC theory requires that any high-stress shear band

must have zero flow rate, _c ¼ 0. This is because the only

other frictional states on the flow curve have dr=d _c < 0 and

are themselves unstable. Thus, any steady banded state com-

prises coexistence, layerwise along the vorticity direction, of

a jammed state at finite stress and a fluid state at zero stress

(since with this orientation, y is equal in both bands). Thus,

no steady flow is possible even with shear bands present; the

only steady flow states for />/m are homogeneous and lie

on the low-friction branch. Dynamically, if the mean shear

stress is increased beyond the stability limit of that branch,

one might then expect its local value to become increasingly

heterogeneous along the vorticity direction until flow stops

altogether for the reasons just described.

V. ABSENCE OF STEADY SHEAR BANDS

It is notable that in our experiments, we observe unsteady

flow at all concentrations />/c where stable banded flow

may, at least at first sight, be expected. We now turn to

explore the origins of these instabilities in our system.

Flow instability, oscillation, and rheological chaos have

been fairly widely reported in both shear-thinning and shear-

thickening viscoelastic materials (particularly but not exclu-

sively micellar solutions [2]). Given the presence of highly

nonlinear constitutive equations that relate stress to strain-

rate history, one might expect instability to be more com-

mon. Mathematically, unsteady solutions can either arise

“directly” from the instability of a steady homogeneous

flow, or through a similar instability within one of the shear

bands that would otherwise allow steady but inhomogeneous

flow [33].

Although in general one does not expect simple rules to

govern whether flows are steady or unsteady, dense non-

Brownian shear-thickening suspensions present a somewhat

special case in relation both to vorticity bands and to gradi-

ent bands. Below, we deal with these two cases in turn. We

consider the case where the flow curve has a sigmoidal

shape, which occurs for /c 	 / < /m, as well as the regime

/>/m (with no upper flow branch), which applies in most

of the experiments presented above. We refer to the flow,

gradient, and vorticity directions as x; y, and z, respectively.

Let us consider the diagonal components of the stress ten-

sor, which comprise an isotropic solvent pressure �psdij plus

the three normal stresses ruu ¼ �puu caused by the presence

of particles. (Here u ¼ x; y; z is a generic, but not summed,

Cartesian index; recall the stress and pressure tensors have

opposite signs.) For strictly hard spheres with fixed frictional

properties, each normal stress is linear in _c. More generally,

we are dealing with a manifold of steady states in which the

ratio of shear to normal stresses (i.e., the macroscopic fric-

tion constant) depends on both volume fraction and the state

of contact friction captured by f ðrÞ

�ruu ¼ puu ¼ rxy=luuð/; f ðrÞÞ: (6)

Generically, the luu are unequal, causing normal stress dif-

ferences N1 ¼ rxx � ryy, and N2 ¼ rxx � ryy:
A simplification made by WC was to suppress the de-

pendence of luu on the state of contact friction, so that it is a

function of / only. This is pursued in Figs. 5(c) and 5(d),

where luuð/Þ is estimated as described in Appendix A,

which also gives further information about what is known of

the luu s in granular systems. More generally, however, the

luu must depend on r via f ðrÞ as well as on /; hence, the

macroscopic friction will have different values on the lower

and upper limiting branches of the flow curve. Therefore,

each of the normal stresses has a shear rate dependence

puuð _cÞ that qualitatively resembles the shear stress rxyð _cÞ,
but is not quantitatively proportional to it as was assumed in

Fig. 5(d). This will prove important in the discussion of gra-

dient bands below. First, however, we address vorticity

bands.

A. Vorticity bands

We consider flow between infinite parallel plates so that ho-

mogeneous flow is possible in principle. Steady vorticity bands

are expected to arise when the applied steady shear stress ra
xy

falls within a window rð1Þxy < ra
xy < rð2Þxy that includes all part

of the flow curve with negative slope. (Vorticity bands are not

expected to arise in experiments at controlled _c [1].) The vor-

ticity bands have a common shear rate, _c1 � _c2, but different

shear stresses rð1Þxy and rð2Þxy [see Fig. 6(a)]. As ra
xy is varied, the

fraction of the sample occupied by each type of band adjusts

so that the space-averaged shear stress is ra
xy.

Mechanical stability then requires equality between bands

of the normal stress normal to the band interface, rzz. We
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thus have p
ð1Þ
s þ pð1Þzz ¼ p

ð2Þ
s þ pð2Þzz . The particle contribution

pzz is mediated by forces (perhaps including lubrication

forces) which are in effect transferred directly from particle

to particle through a network of contacts. The fluid pressure

ps is carried by solvent molecules that can move freely

through the pores of this network. Without Brownian motion

to create an osmotic reaction force, any difference in fluid

pressure between bands should drive the solvent to flow

from high to low ps, with mass balance maintained by a flux

of particles in the opposite direction, from high to low pzz.

Thus, ps and pzz must be separately equal in shear-banded

non-Brownian suspensions. Though the argument is general,

it is particularly transparent for / > /m, when coexisting

vorticity bands are in fact at rest, as previously explained.

No lubrication (or other hydrodynamic) forces then remain,

so the fluid and particle mechanics are completely

decoupled. It is quite clear in this case that the solvent and

particle pressures must be separately equal between bands.

The same argument extends to flowing bands, at least if the

system is treated as two continua (solvent and particles) with

a drag term coupling their two velocities (i.e., a two-fluid

model) [34].

Steady vorticity bands thus require not only equal strain

rate but also equal particle pressure pzz. Since f is only a

function of the particles pressure pzz [Eq. (2)], the fraction

of frictional contacts and thus the frictional states of the

two bands must be identical (note that 0 itself can be seen

as a function of f and pzz [23]). However, if the frictional

state has to be the same in both bands, then the suspension

is identical to one with a fixed microscopic friction coeffi-

cient lp. Therefore, for vorticity bands to be stable, they

also need to be stable for a system with a fixed friction

coefficient. However, suspensions at fixed friction are well

studied and shear banding has not been observed [23,25]. A

supplementary argument, starting from the same premise

and leading to the same conclusion that vorticity banding is

prohibited in dense non-Brownian suspensions, is provided

in Appendix B.

It is helpful to discuss separately the case when / > /m

so that the bands are not flowing. The particle stresses in the

fluid band vanish. In this case, equality of pzz would require

lzz to diverge on the frictional branch so that there is a large

shear stress at vanishing normal stress. However, the fric-

tional branch at / > /m is a jammed solid. Such materials

can support only a finite stress anisotropy without flowing,

so that pzz cannot become infinite as required. Hence, coexis-

tence of nonflowing vorticity bands is ruled out.

B. Gradient bands

We now argue that static gradient bands are also ruled

out in steady state once particle migration is allowed for [see

Fig. 6(b)]. We do not rule these out entirely, but analogous

with the vorticity bands, we show that they should only arise

under conditions where a system of fixed microscopic fric-

tion coefficient would also show gradient banding. This

statement again relies on the fact that the state of friction,

represented by f, can be viewed as a function of pyy only. But

separate equality of the fluid pressure and the normal-normal

stress requires that pyy and hence f is the same in coexisting

gradient bands [35]. Accordingly, such bands can only exist

if they would also do so in a system of fixed friction. As far

as it is known, this does not happen for hard particles (but

might do, very close to jamming, for deformable ones). A

supplementary argument for the prohibition of gradient

bands is provided in Appendix C.

C. Discussion

We have argued that neither vorticity nor gradient band-

ing is generically sustainable in steady state for dense, shear-

thickening suspensions of hard particles in which mechanical

contact and viscous stresses remain unopposed by Brownian

motion. Avoidance of mechanically induced particle migra-

tion then requires that the particle normal stress contributions

puu, with u normal to the interface between bands, and the

solvent pressure ps, are separately equal in coexisting shear

bands.

This condition holds only in strict steady state where all

fluxes between bands must vanish. Quasi-steady shear bands

could however be sustained under transient conditions by a

nonzero flux of particles across the interface. One possible

explanation of the data in [36], which apparently show static

gradient bands, is that these represent a snapshot of the sys-

tem while such fluxes remain transiently present [1,37].

(Note, however, that [36] used a wide-gap Couette system.

In this, geometry banding is expected even for fixed-friction

materials because the imposed ratio of shear to normal stress

varies with radius, and may thus be unrelated to shear

thickening.

The experimental fact, in any case, is that steady flow is

not seen in our system whenever shear banding would be

needed to create it. We have made similar observations on

other materials than corn starch and we believe this to be the

generic outcome for shear-thickening materials under condi-

tions of imposed stress. We leave open the question of what

to expect under conditions of imposed strain rate; since in

fact only the average strain rate gets imposed, it is quite pos-

sible that an unsteady stress response will again arise close

to the DST transition.

When steady banding is not possible, our experiments

suggest that the dynamical outcome is as follows. The sys-

tem jams locally (near the edge of our geometry, because the

stress is largest at the edge of our parallel plates). The par-

ticles migrate away from the jammed region due to the

unequal particle pressure in the jammed region. It is this

local increase in particle pressure that drives particle migra-

tion that also deforms the meniscus. This migration contin-

ues until the pressures balance and locally the flow is no

longer unstable and the system is unjammed. These jams

always form at the edge of our sample, in a parallel plate ge-

ometry, due to the stress gradient over the sample. This

explains how the system is able to flow deep into the regime

where it would be expected to jam.

While we have ruled out stable bands in suspensions of

non-Brownian hard particles, in Brownian suspensions, sta-

ble shear bands might be possible. For stable bands, the sol-

vent pressure difference across the interface between the
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bands needs to be maintained. Without this, the particle pres-

sures must be equal and the argument for non-Brownian sys-

tems forbids stable bands. In Brownian systems, such as

micellar solutions and small hard-sphere colloids, osmotic

forces can maintain an osmotic and thus a solvent pressure

difference across an interface. For micelles, it is known that

these unequal pressures cause differences in Laplace curva-

ture at the external menisci of the two bands (which may fail

if inequalities become large) [38]. In the non-Brownian sus-

pensions studied here, the meniscus deforms (Fig. 3), indi-

cating differences in pressure; however, these deformations

are not stable. To stabilize the frictional shear band, the sys-

tem needs to maintain a higher particle pressure (and thus a

lower solvent pressure) in the frictional band than in the fric-

tionless band. The mechanism required to stabilize the bands

has to push particles from the frictionless band toward the

frictional band and it has to do this against the particle pres-

sure. Although Brownian motion is required, it might not be

sufficient for the formation of stable bands. Equilibrium

effects such as diffusion will never push hard colloidal par-

ticles against a pressure gradient. One way this can happen is

through an out-of-equilibrium mechanism such as flow con-

centration coupling as in shear thickening micelles solutions

[2,39]. Whether this is also possible for Brownian hard

spheres remains to be investigated.

VI. CONCLUSION

The phenomenology of CST of non-Brownian suspen-

sions is well described by the WC theory [9,15]. In this

work, we have shown that the same applies in the DST re-

gime, so long as one allows that the instability connected

with a sigmoidal flow curve need not lead to the formation

of steady-state vorticity bands. The steady banding picture

would give two regimes with DST: one in which the bands

comprise two different flowing states (the upper and lower

quasi-Newtonian branches of the flow curve), at / < /m;

and one in which both the low-friction and the high-friction

branch are not flowing, at / > /m.

The latter is a strong prediction of any steady banding hy-

pothesis since it implies that, above a relatively modest stress

threshold �5r?, a static load can be supported indefinitely

even though only part of the structure (the jammed bands) is

contributing to its support. If true, this should presumably

also be the case in other geometries of inhomogeneous stress,

such as a person standing on a pool of corn starch suspen-

sion. If particle migration did not matter, the person should

be able to stand still indefinitely without sinking in.

Contrary to the expectations based on any hypothesis of

time-independent shear bands, we find that flow (although

not steady) is possible even in this regime of very high den-

sity. The reason that the system is still capable of flow for

/ > /m is that it only spends part of its time in a jammed

state. Whenever bands are present, particle migration allows

the jammed regions to dilate and unjam. A new jam then

forms somewhere else; bands are unsteady, and a finite aver-

age rate of flow is achieved. Even if the local stress exceeds

the highest threshold calculated by WC, beyond which one

expects homogeneous complete jamming rather than shear

bands, particle migration into regions of lower stress will

always allow motion to occur. This concurs with the obser-

vation that a pool of corn starch cannot in fact support a

localized static weight for very long times [40]. According to

our arguments, however, if this high threshold is exceeded

across the entire sample, flow would finally cease. Hence,

although one cannot stand still on an infinite pool of corn-

starch suspension, it should be possible to do so on a finite

bucket of the material.

If steady shear bands are indeed ruled out by our argu-

ments, the ubiquitous unsteady flows that we observe stem

naturally from the large, unstable, negative-slope region in

the flow curves, predicted by the WC theory at / values

close to and beyond /m. We observed a transition from peri-

odically jammed via intermittent to rheochaotic flows upon

increasing the stress. Comparable behavior, while differing

from system to system in the particular route to chaos (e.g.,

[41]), is well known for viscoelastic micellar solutions. It

has even been observed for shear-thickening suspensions

before, but was attributed then to wall slip [42]. This expla-

nation is ruled out by the fact that we see the same phenome-

nology with and without hatched plates.

Combining the theoretical arguments leading to sigmoidal

flow curves [15], with the case made above for the generic

inadmissibility of shear-banded steady states, there is every

reason to believe that our observations represent the inherent

bulk rheology of very dense suspensions. Of course, the

details of each unsteady flow, particularly in the chaotic

regimes, may depend on the precise sample geometry. In

particular, it may be influenced by the finite stress and/or

strain-rate gradients imposed by all real rheometers.

Nonetheless, it seems clear that unsteady flow is an intrinsic

element of the rheology of very dense shear-thickening

suspensions.

FIG. 6. (a) A schematic of vorticity banding as it could hypothetically occur

for a homogeneous volume fraction. (b) A schematic of gradient banding as

it could hypothetically occur in an inhomogeneous sample.
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APPENDIX A: MACROSCOPIC FRICTION
COEFFICIENTS

The detailed form of lðrxy;/Þ has not been reported for

shear thickening systems although some work exists for vis-

cous granular systems, which permanently occupy the high-

r shear-thickened state [9]. Imposed pressure measurements on

frictional non-Brownian spheres [23] and 2D simulations of cir-

cular disks [24] found lyyð/Þ to be a monotonically decreasing

function of /, tending to a nonzero value lc at the jamming vol-

ume fraction /m, itself a function of the particle friction coeffi-

cient lp. Data for different lp including lp ¼ 0 collapse onto

the same master curve in the 2D simulations. Since varying rxy

essentially shifts the jamming volume fraction /JðrxyÞ between

/0 and /m, this collapse implies that l ¼ lð/Þ only. A rxy-

dependence may exist in 3D, but we assume that this is small.

Deboeuf et al. [43] and Garland et al. [44] have measured

the /-dependence of the particle normal stress in the vortic-

ity direction rzz, but did not report lzzð/ÞWe can obtain lzzz

indirectly via the second normal stress difference, N2

N2

rxy
¼ 1

lyy

� 1

lzz

: (A1)

For shear thickening dispersions, N2 is typically small in

magnitude and scales approximately with the shear stress for

both continuous [45] and discontinuous [30] thickening,

implying that the ratio lzz=lyy is independent of rsy. In gran-

ular suspensions, N2=rxy has been found to vary only weakly

with / close to /m [46]. Together, these observations sug-

gest that, in the range of / we are considering, lzz is propor-

tional to lyy and thus also slowly varying and monotonic.

When plotting Fig. 5(d), we took empirical expressions

for lyyð/;/mÞ from [23] up to /m using our value of

/m¼ 0.56 [solid line, Fig. 5(b), inset]; above /m we use the

form in Fig. 5(c) (dashed line), which is a plausible extension

of the curve given results from 2D simulations [24]. The

curves for rzz (not shown) are qualitatively similar.

APPENDIX B: SUPPLEMENTARY ARGUMENT FOR
PROHIBITION OF VORTICITY BANDS

Separate equality of ps and pzz between bands implies that

for steady-state vorticity banding

rð1Þxy =l
ð1Þ
zz ð/1; f ðrð1Þxy ÞÞ ¼ rð2Þxy =l

ð2Þ
zz ð/2; f ðrð2Þxy ÞÞ: (B1)

Suppose first that /1 ¼ /2. The impossibility of Eq. (B1)

being obeyed is then easily seen by thinking about the spe-

cial case of r-independent friction depicted in Fig. 5(d).

With vorticity bands, a vertical line segment must be

found connecting two different points on the same blue

curve (common _c and / but unequal shear stress). But this

implies the existence of a similar line segment on the corre-

sponding curve for pzz (which closely resembles the red curve

shown for pyy) so that the relevant normal stress is also unequal.

A little thought shows the same to hold generically even

when lzz depends on stress via f ðrÞ, so long as this depend-

ence is reasonable, such as the expected smooth evolution

between two order-unity limits as f varies from 0 to 1 [15].

Although exceptions might be created by fine-tuning the

stress dependence of lzz in an exotic way, the generic

physics is as follows. Steady vorticity bands are precluded

because they need to be at the same particle pressure; but if

they were, their frictional state and hence shear state would

also be the same, leaving no difference between the bands.

Vorticity bands with unequal concentration, /1 6¼ /2, can

be excluded by a slight generalization of the same approach.

Such bands require us to construct a vertical line connecting

two blue curves such that the corresponding red curves are

coincident at the chosen _c. If l is a slowly varying function

of /, then no two red curves ever coincide except at the ori-

gin [see Fig. 1(d)]. If lzzð/Þ is strongly decreasing close to

/m, then one could construct a situation in which a high-rxy,

low-0 phase coexists with a low-rxy, high-/ phase. [The con-

verse situation arises when lzzð/Þ increases rapidly close

to /m.] But in that case, the ratio of lzz at /1 and /1 and

/2 < /1 must be comparable to the ratio of the viscosities of

the limiting quasi-Newtonian regimes at /2

lzz /2ð Þ
lzz /1ð Þ

�
g rxy � r?;/2

� �
g rxy � r?;/2

� � : (B2)

For the parameters used to generate the flow curves in Fig. 5,

this requires lzzð/Þ to jump by a factor of lzzð0:553Þ
=lzzð0:558Þ � 102 over a /-range of 0.005. In the data of

[23], Fig. 5(b), the change in lyy/ is at most 10% over the

same range. By this argument, even allowing for particle

migration, steady-state vorticity bands are physically pre-

cluded by equality of pzz.

APPENDIX C: SUPPLEMENTARY ARGUMENT FOR
PROHIBITION OF GRADIENT BANDS

Gradient bands coexist at a common shear stress rð1Þxy ¼
rð2Þxy but different shear rates _c1 6¼ _c2. The shear-thickening

flow curves of interest have multivalued rð_cÞ but single-

valued _cðrÞ. Crucially, this requires gradient bands always

to have different concentrations, /1 6¼ /2.

Mechanical stability now demands that the normal stress

component in the velocity gradient direction is continuous

across the band interface, rð1Þyy ¼ rð2Þyy . Using the same argu-

ments as before to rule out spatial variations in solvent

pressure ps, we find the condition

lyyð/1; f ðrð1Þxy ÞÞ ¼ lyyð/2; f ðrð2Þxy ÞÞ ¼ lyyð/2; f ðrð1Þxy ÞÞ; (C1)

where the last equality follows from the common shear

stress in the two bands. Graphically, in reference to Fig.

5(d), steady gradient bands require us to find a horizontal
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line that connects two flow curves at different / (blue

lines) such that the corresponding ryy values (red lines)

are also equal. The latter is true if lyy is independent of

/ (as was assumed for simplicity by WC), but is other-

wise ruled out for monotonic but nonconstant lyyð/Þ of

the kind generically expected in practice [compare Fig.

5(c)].

A possible exception again arises for the coexistence of

a fully jammed state ð/ > /m; _c ¼ 0Þ with a flowing one

ð/ > /m; _c > 0Þ. This outcome was reported in [36];

however, these authors used a wide-gap Couette system. In

this geometry, “banding” is expected even for fixed-

friction materials because the imposed ratio of shear to

normal stress varies with radius. The interface between

static and flowing “bands” is where this ratio crosses the

static friction threshold set by the repose angle in the

material.

Assuming a constant ratio rxy=ryy ¼ lJ within the

jammed band, then our argument still holds so long lJ

�lim lyyð/! /�mÞ is either zero (as expected by continuity

arguments), or has the same sign as dlyy=d/ (in effect,

maintaining monotonicity). However, if lJ is not constant

but depends on other variables in the jammed state (such as

a prior transient flow history or an elastic strain), gradient

banding is not necessarily ruled out. Yet it would require

the dense, frictional, jammed band to maintain as low a

normal stress as a more dilute, less frictional, flowing one

of equal rxy. As discussed above for the case of vorticity

bands, this reverses the usual expectation concerning the

relative dilatancy and/or friction of these two types of

packing.
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