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Generalized drift velocity of a cholesteric texture
in a temperature gradient

Alain Dequidt,*ab Guilhem Poyc and Patrick Oswaldc

We propose a general method to calculate the drift velocity of cholesteric textures subjected to a

temperature gradient when the backflow effects are negligible. The textures may be Translationally

Invariant Configurations (TICs) or localized structures such as cholesteric droplets or cholesteric fingers.

For the TICs and for the droplets, the drift is rotational while for the fingers, the drift is translational. We

show that for the TICs, the drift is only due to the thermomechanical coupling terms of Leslie (classical

term) and of Akopyan and Zel’dovich (which are additional texture-dependent terms). For the localized

structures, we show that another mechanism involving the temperature variations of the elastic

constants and the existence of a transverse temperature gradient can lead to a drift which adds to the

one due the classical thermomechanical effects.

1 Introduction

Cholesteric liquid crystals (LC) are chiral nematics. Under the
action of a temperature gradient, their texture can drift in a
permanent way. This drift can be rotational or translational.
The most simple example of a rotational drift is the rotation of
the planar texture obtained by orienting the cholesteric helix
parallel to the temperature gradient and perpendicular to the
glass plates treated for sliding planar anchoring.1,2 In this
geometry (usually called Leslie’s geometry), the helix rotates
at constant velocity under the action of the thermomechanical
Leslie torque. This effect was observed both in compensated
and diluted cholesteric mixtures. Another famous example is
the rotation of cholesteric droplets when they coexist with their
isotropic liquid at the melting temperature of the LC. This
effect was discovered by Lehmann in 19003 and reproduced
only recently.4–7 This effect was first interpreted as due to the
Leslie thermomechanical torque8 but we recently showed that
this interpretation is incomplete.9,10 Cholesteric fingers (CF)
are elongated, isolated structures that form in confined choles-
teric samples treated for homeotropic (i.e. perpendicular)
anchoring of the molecules at the surfaces. These textures can
drift continuously when the sample is placed in a temperature
gradient perpendicular to the plates. This phenomenon was first
observed in a compensated mixture and was attributed to the

Leslie torque.11 It was also observed in a diluted mixture close to
the transition to the smectic phase, which is more surprising as
we shall discuss later.12

The goal of the paper is to propose a general formalism to
calculate the drift velocity of these textures. This method will
enable us to show that other phenomena than the Leslie torque
can lead to a drift. In particular, the role of the temperature
variations of the elastic constants and of the ‘‘nematic like’’
thermomechanical coefficients13,14 will be analyzed.

The plan of the article is the following. In Section 2, we
establish the general formula for the drift velocity. This formula
will then be applied to particular cases: – the rotation of the
TICs (Translationally Invariant Configurations), the texture
of which is uniform in the plane of the sample plates with
planar sliding, homeotropic, or mixed boundary conditions
(Section 3); – the drift of the cholesteric fingers (Section 4);
and the rotation of the cholesteric droplets (Lehmann effect,
Section 5). Conclusions will be drawn in Section 6.

2 Generalized drift velocity of a
cholesteric texture in an external field

In this section, we focus on the special configurations where
the total free energy E – including the bulk elastic energy F and
the surface anchoring energyW on the boundaries – is invariant
under a continuous transformation T s parametrized by a para-
meter s, such that T 0 is the identity. E is a functional of the

director field ~n; ~r~n
� �

, but may also explicitly depend on other

fields such as the temperature field T. In practice, the elastic
constants and the anchoring energy depend on the temperature
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so that E does explicitly depend on the temperature. A con-
sequence of this invariance is that the configurations {-n,T} and
T s~n; T sTf g can be deduced from each other by a global transla-

tion and (or) a solid rotation of the whole system.
By definition, E T s~n; T sT½ � is independent of s. As a

consequence,

@E T s~n; T sT½ �
@s

����
s¼0
¼
ð
V

�~h �D~n
Ds
þ dF

dT
DT

Ds

� �
dV

þ
ð
S

C �~n � ~hS
� �

�D~n
Ds
þ dW

dT
DT

Ds

� �
dS ¼ 0:

(1)

In these equations, ~h ¼ �dF
d~n

is the molecular field of compo-

nents
d

dxj

@f

@ni; j
� @f

@ni
by denoting by f (ni, ni,j, T) the elastic free

energy per unit volume (including the electric and magnetic
free energy if an external field is applied), C is the elastic

surface torque tensor of component Cij ¼
@f

@ni; j
, ~hS ¼ �

dW
d~n

is

the surface molecular field of components �@w
@ni

by denoting by

w(ni, T) the anchoring energy per unit surface. ~n is the unit
vector perpendicular to the boundary of the LC and

D~n

Ds
¼ lim

s!0

T s~n�~n
s

;
DT

Ds
¼ lim

s!0

T sT � T

s
: (2)

We now assume that the system is subjected to a temperature

gradient, denoted by
-

G. By assuming that there is no flow of matter
in the sample,† the torque equations for the director read15,16

g1
@~n

@t
¼ I�~n�~nð Þ � ~hþ ~fTM

� �
(3)

in the bulk of the LC, and

gS
@~n

@t
¼ I�~n�~nð Þ � ~hS � C �~n

� �
(4)

on the surface of the LC. Here, I is the identity matrix, # denotes

the dyadic product of two vectors (with ~a� ~b
� �

ij
¼ aibj), g1 is the

rotational viscosity, gS is a surface viscosity and
-

fTM is the thermo-
mechanical force on the director. We propose the following form

for
-

fTM, in which the contribution of splay, twist and bend
deformations is clear:

~fTM ¼ �x1 ~r �~n
� �

~Gþ �x2~n � ~r�~n
h i

þ n
� �

~n� ~G
� �

þ �x3 ~n � ~G
� �

~r�~n
h i

�~n
� �

� �x4~r � ~G�~n� ~G �~n
h i

I
� �

(5)

Note that
-

fTM includes the classical Leslie term (proportional to the
Leslie coefficient n),16,17 as well as ‘‘texture dependent’’ terms first

introduced by Akopyan and Zel’dovich13 and recalculated more
rigorously by Pleiner and Brand.14 This expression includes
terms coming from the macroscopic deformation of the direc-

tor field (terms proportional to �xi and ~r~n) and a term coming
from the phase chirality, here due to the microscopic chirality
of the molecules (Leslie’s term proportional to n). Macro- and
microscopic chirality may both play a key role depending on the
LC properties and on the sample geometry2,18–20 The corre-
spondence with the formulation of Akopyan and Zel’dovich and
that of Pleiner and Brand, is given in the appendix.

By replacing
-

h and ~hS þ C �~n in eqn (1) by their expressions
given by eqn (3) and (4), we obtainð

V

g1
@~n

@t
�D~n
Ds

dV þ
ð
S

gS
@~n

@t
�D~n
Ds

dS

¼
ð
V

~fTM �
D~n

Ds
dV þ

ð
V

dF
dT

DT

Ds
dV þ

ð
S

dW
dT

DT

Ds
dS

(6)

Without the external field
-

G, the director field evolves to an
equilibrium configuration -n0 which minimizes the free energy E.
This solution is not unique because T s~n0 is also a solution. This
comes from the Curie symmetry principle according to which the
set of solutions of the equations has the same symmetry as the

equations. In the presence of
-

G, the system can evolve to a
stationary state with a constant ‘‘drift’’ of the parameter s, such that

~nðtÞ ¼ T sðtÞ~nð0Þ (7)

with s(t) = vst drifting at constant velocity vs. In this stationary state,

@~n

@t
¼ D~n

Ds
vs: (8)

By replacing
@~n

@t
by its expression in eqn (6), we calculate two

contributions to vs:

vs = vTM
s + vE

s , (9)

where vTM
s is the drift velocity due to the thermomechanical

cross coupling and vE
s the drift velocity due to the variation of

the free energy with the temperature:

vTMs ¼ 1

Ig

ð
V

~fTM �
D~n

Ds
dV ; (10)

vEs ¼
1

Ig

ð
V

dF
dT

DT

Ds
dV þ

ð
S

dW
dT

DT

Ds
dS

� �
; (11)

with

Ig ¼
ð
V

g1
D~n

Ds

� �2

dV þ
ð
S

gS
D~n

Ds

� �2

dS: (12)

Formula (11) shows that, in addition to the thermomechanical
terms, the variation in temperature of both the elastic con-
stants and the anchoring energy can lead to a drift. At this level,
it must be emphasized that f is defined within an additive
constant f0(T) only function of temperature. This function does

not contribute to the velocity because
Ð
V

df0

dT

DT

Ds
dV ¼

Ð
V

Df0

Ds
dV ¼ @

@s

Ð
Vf0dV ¼ 0 due to the s invariance. This can be

† This means in particular that we neglect any flow induced by the rotation of the
director, the so-called backflow effects.
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checked directly from the examples given below in Sections (3–5).
The same holds for w that is defined within an additive
constant w0(T) only function of temperature. It may also be

noted that the �x4 term in vTM
s can be put in the form

D

Ds
~G �~n
� �

~r �~n
� �h i

� ~r � ~G �~n
� �D~n

Ds

� �
if

-

G is assumed uniform

and the derivatives
D

Ds
and ~r commute, which is the case for

the rotational and translational drift phenomena addressed in

the next three sections. In this case, the integral of the �x4 term
also reduces to surface contributions which vanish for strong
zenithal anchoring and in the absence of singularities like
disclinations.

In practice, the LC sample of thickness d is prepared
between two parallel glass plates of total thickness h c d and

the temperature gradient
-

G is obtained by imposing a tempera-
ture difference DT between the two external faces of the sample.

In the limit DT - 0, the local gradient
-

G in the LC is
proportional to the imposed temperature gradient Ĝ = DT/h.

The same holds for
-

fTM and
DT

Ds
. This defines the linear regime

in which

vs / Ĝ ¼ DT
h

(13)

This proportionality is generally observed in experiments, so
our calculations can be restricted to first order in Ĝ. In this
case, all integrals in eqn (10)–(12) can be evaluated in the
equilibrium configuration -

n0 and with equilibrium values of
the material constants.

3 Application to translationaly
invariant configurations
3.1 General configuration

If the texture is invariant by translation in the plane (x, y) with
the z-axis perpendicular to the plates located at z = 0 and z = d,
there are no distortions in the (x, y) plane. The equations of the
system are thus invariant by a rotation of the director around -

ez

by the same angle F everywhere. Furthermore,
-

G is parallel to -
ez

and the temperature field is independent of F. Taking s = F, we

find
D~n

DF
¼~ez �~n and

DT

DF
¼ 0. Hence, in these geometries, only

the thermomechanical couplings contribute to the angular
drift and

o ¼ dF
dt
¼ vF ¼ vTMF : (14)

The director components are

~n ¼

sin a cosf

sin a sinf

cos a

0
BBB@

1
CCCA; (15)

where the angles a and f are assumed to only depend on z. The
angular drift velocity can be decomposed into three terms:

o ¼ 1

Ig
In þ I2 þ I3ð Þ (16)

with

In ¼ �
ðd
0

Gn sin2 a dz; (17)

I2 ¼
ðd
0

G�x2f;z sin
4 a dz; (18)

I3 ¼
ðd
0

G�x3f;z cos
2 a sin2 a dz; (19)

and

Ig ¼
ðd
0

g1 sin
2 a dz

þ gSð0Þ sin2 að0Þ þ gSðdÞ sin2 aðdÞ
(20)

The temperature gradient G may depend on z in general
because of the anisotropy of the heat conductivity. The
heat flux J, on the other hand, is independent of z in the
stationary regime. Strictly speaking, there is a linear cross
coupling between J and o ( J E kG + no where k is the heat
conductivity of the LC and o E nG/g1). However, this coupling
is completely negligible because it gives a relative correction
to the heat flux of order n2/kg1 B 3 � 10�12 by taking k E
0.15 W m�1 K�1,16 g1 E 0.02 Pa s16 and nE 10�7 kg K�1 s�2.2

So we can write J = (k>sin2a + kJ cos2a)G E kgĜ (since h c d)
by denoting by k> (kJ) the heat conductivity perpendicular
(parallel) to the director and by kg the heat conductivity of the
glass plates limiting the sample. This gives

G ¼ kg
k? sin

2 aþ kjj cos2 a
Ĝ: (21)

In the following, we apply eqn (16) to particular configura-
tions, starting with the simplest one first described by
Leslie.21

3.2 Rotation of the planar texture under sliding anchoring
conditions

It is known2,22 that the director rotates continuously in planar
cholesteric samples when the surfaces are treated for sliding
anchoring and a temperature gradient is applied perpendicularly
to the plates (Leslie’s configuration21). The director remains
planar with a = p/2. By using eqn (16), we obtain:

o ¼ Ĝ
kg
k?

Ð d
0

�x2f;z � n
	 


dzÐ d
0g1dzþ gSð0Þ þ gSðdÞ

: (22)

In the linear regime, f,z can be replaced by its equilibrium
value q0 and the material constants g1, n and �x2 can be taken
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independent of z, yielding to the simplified equation

o ¼ Ĝ
kg
k?

�x2q0 � n

g1 þ
1

d
gSð0Þ þ gSðdÞ½ �

: (23)

This equation shows that the thermomechanical coefficient
measured experimentally in this geometry is not n but
�n = n � �x2q0.‡ It is important to note that in this geometry
the director remains planar. As a consequence there are only
twist deformations and the backflow disappears.15,16 This
means that the no-flow approximation is exact in this particular
case and that formula (3) is exact in the Leslie’s configuration.

3.3 Rotation of the TIC under homeotropic anchoring
conditions

We now consider a cholesteric LC of negative dielectric aniso-
tropy sandwiched between two parallel electrodes treated for
strong homeotropic anchoring. Let C = d/p denote the confine-
ment ratio (d is the sample thickness and p = 2p/q0 the equili-
brium cholesteric pitch). It can be shown that if C o C% = K32/2
where K32 = K3/K2 is the ratio of the bend and twist constants,
the cholesteric phase unwinds and forms a homeotropic
nematic phase. Conversely, it is possible to wind again the
cholesteric phase by applying a destabilizing AC electric field
E = V/d. If the sample is thin enough, the configuration which
develops above the critical voltage

Vc
2 ¼ 4p2K3

�ea
1

4
� C2

K32
2

� �
(24)

is translationaly invariant in the plane of the sample (TIC) with
its helical axis perpendicular to the electrodes. This configu-
ration, shown in Fig. 1, develops when C o Ctr o C% where
Ctr defines the position of a triple point in the parameter plane
(E, C).16,23 In this regime, the Nematic-to-TIC transition is
second order. As the consequence, the tilt angle a of the
director with respect to the z axis is small just above the onset
of instability and -

n has for components (a cosf, a sinf, 1 � a2)
at second order in a.

We now assume that a temperature gradient is applied
perpendicularly to the electrodes. By using eqn (16), we get at
lowest order in a:

o ¼ Ĝ
kg
kjj

Ð d
0

�x3f;z � n
	 


a2dzÐ d
0g1a

2dz
: (25)

It can be shown that f,z = q0/K32 at equilibrium.16,23 In the
linear regime, the thermomechanical and elastic coefficients

can again be taken as constant, and the integrals of a2 simplify.
Finally, it remains:

o ¼ Ĝ
kg
kjj

�x3
q0

K32
� n

g1
: (26)

3.4 Application to the rotation of the TIC under mixed
anchoring conditions

In practice, it is possible to combine the two previous geome-
tries by treating one plate (for instance the top one at z = d) for
strong sliding planar anchoring and the other at z = 0 for strong
homeotropic anchoring. With these boundary conditions, a TIC
forms if the sample is thin enough, typically when C = d/p o 1/2.
For larger thickness, stripes develop and the texture is no longer
invariant by translation.24 Using eqn (16) in the linear regime,
where the material constants can be taken constant over the
sample thickness, yields

o ¼ Ĝ
kg
kjj

�x2q0 �I2 þ �x3q0 �I3 � n�In

g1 �Ig þ
1

d
gSðdÞ

(27)

with the dimensionless integrals

�In ¼
1

d

ðd
0

sin2 a

1� e sin2 a
dz; (28)

�I2 ¼
1

q0d

ðd
0

f;z sin
4 a

1� e sin2 a
dz; (29)

�I3 ¼
1

q0d

ðd
0

f;z cos
2 a sin2 a

1� e sin2 a
dz; (30)

�I g ¼
1

d

ðd
0

sin2 a dz: (31)

Here, e = 1 � k>/k|| is the relative anisotropy of thermal
conductivity. The integrals can be computed numerically with
Mathematica once the two differential equations that describe

the static torque balance:
dF
da
¼ 0 and

dF
df
¼ 0 are solved.

Fig. 1 Director field in the TIC induced by a vertical electric field. Tilted
molecules are represented by nails, proportional in length to the director
projection in the plane of the drawing. The head of the nails is below the
plane of the drawing and their points are directed towards the observer.

‡ It must be emphasized that in our previous papers, we ‘‘regularized’’ the
expression of f~TM in the cholesteric phase by replacing the term

x2 ~n � ~r�~n
� �

~n� ~G
� �

of the Akopyan and Zel’dovich equation by

x2 ~n � ~r�~nþ q0

� �
~n� ~G
� �

in order that f~TM vanishes in the cholesteric phase

when the helix is not distorted. With this choice, the measured quantity is n in the
linear regime10,11. A posteriori, we think that this choice is not justified because
the system is out of equilibrium as long as the cholesteric phase is subjected to a
temperature gradient, even when the helix is not distorted. This is the reason why
we do not regularize f~TM in this paper.
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We performed the calculation for different values of C by
choosing K1 = 1.87 pN, K2 = 1.15 pN, K3 = 2.64 pN and e = 0.13.
These values correspond to MBBA at the nematic to isotropic
phase transition.25,26 This choice was dictated by the fact that
MBBA is a very classical LC with a negative dielectric anisotropy.
The results are shown in Fig. 2.

These calculations show that measuring o in the three
geometries described above should allow, in principle, to
determine n, �x2 and �x3.

4 Application to the drift of cholesteric
fingers

In homeotropic samples, cholesteric fingers of the first type
(CF1) form when the confinement ratio C = p/d is close to 1.27

The CF1s are elongated, isolated textures that minimize
the frustration created by the boundary conditions. Their
structure is invariant by translation along their long axis and
is shown in Fig. 3. Previous experiments have shown that the
CF1s can drift perpendicularly to their axis and form spirals
when they are subjected to a temperature gradient. This effect
was first observed in compensated mixtures where isolated
CF1s form when the temperature is close to the compensation

temperature.11 In this case, the drift is mainly due to the
Leslie torque acting on the director. In the next paragraph, we
show how to recover this result from our general formulation
of the problem.

4.1 Finger drift in compensated mixtures: model based on the
existence of the thermomechanical terms of Leslie, Akopyan
and Zel’dovich

In this paragraph, we focus on the thermomechanical contri-
bution vTM to the drift velocity. For simplicity, we assume that
the homeotropic anchoring is very strong. As a result, -n does
not change on the plates and the surface dissipation becomes
negligible. We now consider a straight isolated CF1 with the
axis parallel to the -

ey axis (Fig. 3). The plates are perpendicular
to the -

ez axis. We denote by -
n0 the equilibrium solution

obtained when
-

G = 0 and by -n the general solution when
-

G a 0.
The system equations are invariant by any translation X along -

ex.

By using s = X, it comes
D~n

DX
¼ lim

X!0

~nðx� XÞ �~nðxÞ
X

¼ �@~n
@x

. By

definition, the generalized velocity vTM = dX/dt given by the
general eqn (10) is the drift velocity v of the finger. It reads by
taking into account the assumptions made at the beginning of
the paragraph:

vTM ¼ �

Ð
V
~fTM �

@~n

@x
dV

Ð
Vg1

@~n

@x

� �2

dV

(32)

The formula further simplifies neglecting the anisotropy of
thermal conductivity, i.e. by assuming that the temperature

gradient is little different from the average gradient Ĝ
kg
kjj
~ez. In

the linear regime, -n can also be replaced by the equilibrium

solution -n0 and the material constants g1, n and �xi (i = 1–4) are
independent of the temperature. Under these assumptions, we

obtain by using the expression of
-

fTM given in eqn (5):

vTM ¼ �dĜkg
kjj

nJn þ �x1q0J1 þ �x2q0J2 þ �x3q0J3
g1Jg

(33)

where the dimensionless integrals Ji are defined by

Jn ¼
1

d

ð
~n0 �~ezð Þ � @~n0

@x
dxdz; (34)

J1 ¼
1

q0d

ð
~r �~n0
� �

~ez �
@~n0
@x

dxdz; (35)

J2 ¼
1

q0d

ð
~n0 � ~r�~n0

h i� �
~n0 �~ezð Þ � @~n0

@x
dxdz; (36)

J3 ¼
1

q0d

ð
~n0 �~ezð Þ ~r�~n0

h i
�~n0

� �
� @~n0
@x

dxdz; (37)

Jg ¼
ð
@~n0
@x

� �2

dxdz: (38)

Fig. 2 Integrals Īg, Īn, Ī2 and Ī3 as a function of the confinement ratio
C = d/p. Values calculated for MBBA at the transition to the isotropic liquid.

Fig. 3 Director field inside a cholesteric finger of the first type (CF1).
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This formula generalizes a formula already given in ref. 11 and

28 where the thermomechanical coefficients �xi were neglected.§
It must be noted that the fingers exist when C E 1. As a

consequence, all these dimensionless integrals are only func-
tion of the ratios of the elastic constants. This shows that the
drift velocity is proportional to d. Another important point to
emphasize is that, for symmetry reasons, these integrals do not
change sign when q0 changes sign.¶

This calculation shows that the thermomechanical terms �xi

may lead to a drift of the CF1s. In the compensated mixtures,
the dominating term is the Leslie term since the others in �xiq0

are expected to be small close to the compensation temperature
where q0 = 0. This explanation of the drift of the CF1s was
proposed in ref. 11 and was confirmed by the fact that the drift
velocity is almost the same on both sides of the compensation
temperature. In addition, the value of n interpolated from these
measurements of the drift velocity is compatible with the value
of n measured directly in the Leslie’s geometry at the compen-
sation temperature.

4.2 Finger drift in diluted cholesteric mixtures: model based
on the temperature variation of the elastic constants

In the diluted mixtures, the CF1s usually do not drift in a
measurable way. This is expected from the previous model
because the coefficient �n (which we suppose to be of the same
order of magnitude as n and �xq0) is too small, typically 10 to
100 times smaller than the coefficient n measured in the
compensated mixtures. This is due to the fact that in the
diluted mixtures the concentration of chiral molecules is also
10 to 100 times smaller than in the compensated mixtures
(usually obtained by mixing a LC with a large concentration of
cholesteryl chloride, up to 60% by mass).

There is nonetheless an exception that was observed in an
eutectic mixture of 8CB and 8OCB doped with a small amount
of R811. This mixture has a smectic A phase at low temperature.
In this mixture, it was observed that the CF1s start to drift in a
measurable way when the temperature approaches the transition
temperature to the smectic phase. This is very surprising
because the viscosity g1 diverges in this limit,29 which could
lead to a fast decrease of the drift velocity. The only possibility to
explain this observation within the previous model of Section 4.1
would be that the thermomechanical coefficients diverge faster
than g1. In order to test this hypothesis, we measured the Leslie
coefficient in the diluted mixture 8CB + 1 wt% R811 and found
that n does not diverge at the transition.8 This result shows that
the previous model cannot explain the drift of the fingers close
to the smectic phase. Another explanation must be found.

It turns out that the general eqn (11) contains another
explanation. Indeed, this expression shows that two other

terms, that we neglect so far, can lead to a drift. The first one is

a volume term proportional to
dF
dT

and the second one a surface

term proportional to
dW
dT

. Both are proportional to the horizontal

temperature gradient since
DT

DX
¼ lim

X!0

Tðx� XÞ � TðxÞ
X

¼ �@T
@x

.

These two terms can dominate the thermomechanical terms if
F and (or)W strongly depend on temperature. This is expected
close to the transition to the smectic phase as explained below.
In this situation, the drift velocity reads:

vE ¼ �

ÐdF
dT

@T

@x
dxdzþ

ÐdW
dT
ð0; dÞ@T

@x
dx

Ð
g1

@~n

@x

� �2

dxdzþ
Ð
gSð0; dÞ

@~n

@x

� �2

dx

: (39)

This formula simplifies if the anchoring energy is very large
and if the thermal conductivity of the plates is much larger than
that of the LC. In this case, the two surface integrals in gS and

can be neglected because
@~n

@x
� 0 and

@T

@x
� 0 on the plates.

This gives:

vE ¼ �

ÐdF
dT

@T

@x
dxdz

Ð
g1

@~n

@x

� �2

dxdz

(40)

This new model shows that the temperature variations of the
elastic constants can lead to a drift. In general, the elastic
constants change little with temperature and this effect is
negligible. The situation is different close to the transition to
the smectic phase where the bend and the twist constants K3

and K2 diverge because of the presence of smectic cybotactic
groups.29 This divergence could explain the drift observed
experimentally.

Another important point of the model is that it is not the

vertical temperature gradient, but the horizontal one
@T

@x
, that is

directly responsible for the drift. This gradient appears as long
as the finger is subjected to an average temperature gradient
along -

ez. The reason is that the thermal field lines are distorted
inside the finger because of the anisotropy of the thermal
conductivity. In addition, a finger has no mirror symmetry
because the cholesteric phase is chiral. As a consequence, the
temperature field also has no mirror symmetry so that one side
(in the x-direction) of the finger must be colder than the other.

The drift can be qualitatively explained as follows: because
the elastic constants of the cholesteric LC depend on tempera-
ture, the free energy of the finger is sensible to the temperature
field. For this reason, the finger prefers to shift to the side
where it has the lower energy. In return, the temperature field
follows the finger as a propagating wave. This pushes the finger
forward like a surfer on a wave. This effect must be especially
strong close to the smectic transition where the twist and bend
elastic constants diverge.

To conclude this paragraph, let us estimate the drift velocity.
The first question is to calculate the horizontal gradient.

§ We mention that there is an error of sign in eqn (3) of ref. 11. On the other
hand, all the rest is correct in the paper, in particular the numerical value of the
constant A calculated from this equation.
¶ When q0 changes sign, the equilibrium configuration is changed to its mirror
image in a (y, z) plane.
8 P. Oswald, unpublished results.
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At small Ĝ (linear regime) it is obtained by solving the heat
equation. At first order in Ĝ, this equation reads

~r � k?~rT þ ka ~n0 � ~rT
� �

~n0

� �
¼ 0 (41)

where ka = kJ � k> is the anisotropy of conductivity. Note that
in this equation, the heat production due to the rotation of the
director has been neglected as well as the non stationary term
@T

@t
as the calculation is done in the equilibrium configuration -

n0.

We can always decompose the temperature field as Tðx; zÞ ¼

T0 þ Ĝ
kg
kjj
ðzþ gdÞ by introducing the relative perturbation of

temperature g(x, z) due to the finger and by denoting by T0 the
temperature of the bottom plate. With this notation, it comes
@T

@x
¼ Ĝ

kg
kjj
d
@g

@x
. By assuming that the conductivities are con-

stant, the equation for g reads

~r � ~rgþ ka
k?

~n0 � ~rgþ
~n0 �~ez
d

� �
~n0

� �
¼ 0; (42)

with the boundary condition g = 0 on both plates. This
equation, which can be solved numerically, shows that g a 0

as long as ka a 0. Knowing that
@T

@x
¼ Ĝ

kg
kk
d
@g

@x
, eqn (40)

becomes:

vE ¼ �Ĝkg
kjj
d

ÐdF
dT

@g

@x
dxdz

Ð
g1

@~n0
@x

� �2

dxdz

; (43)

where -
n has been replaced by -

n0 (linear regime).
This equation shows that the temperature gradient along

x generates a constant drift velocity proportional to the applied
temperature gradient, in the same way as the thermomechanical
coupling. In other words, this new mechanism acts as an
effective Leslie coupling characterized by an effective coefficient
neff. We can estimate the order of magnitude of neff for a CF1 by
writing that

neff
@~n

@x
�~n

� �
�~ez � d

dF
dT

@g

@x
: (44)

This gives

neff �
dF
dT

dg: (45)

By taking r~n � q0 �
1

d
,
dF
dT
� @K
@T
r~nð Þ2 (with K a typical elastic

constant) and
g

d
� ka

k?
r~n according to eqn (42), we finally obtain

neff �
@K

@T

ka
k?

q0: (46)

This formula again shows that the drift disappears if ka = 0 because
the horizontal gradient disappears in this case. More important,
the eqn (46) states clearly that the sign of neff depends on the sign of
q0. Indeed, under the transformation x - �x, nx - �nx

corresponding to a mirror symmetry with respect to the plane

(y, z), ~ez �
@~n

@x
�~n

� �
is invariant whereas

@g

@x
changes sign. As a

result, neff changes sign when q0 changes sign, contrary to the
Leslie coefficient n, the sign of which is independent of the sign
of q0. In addition, neff is inversely proportional to d because
q0d of the order of 2p in a finger (this is the condition of
existence of a finger).

Finally, the drift velocity is obtained from eqn (33) and (46)
and reads to within a numerical factor:

vE � �Ĝkg
kjj

@K

@T

ka
k?

q0d

g1
(47)

This model could explain the drift of the CF1s close to a smectic
phase transition. The role of the anchoring is more difficult to
grasp because there is no study in the literature of the anchoring
energy close to a smectic phase. On the other hand, it has been
shown that the smectic phase wets the plates over a thickness of
the order of the smectic correlation length.30 This could lead to
additional drift due to a strong variation of W as a function of
the temperature.

5 Application to the rotation of
cholesteric droplets (Lehmann effect)

To end this paper we could question whether this new mechanism
introduced to explain the drift of the fingers close to a smectic
transition could not also explain the rotation of cholesteric dro-
plets in the isotropic liquid, the famous Lehmann effect. Indeed,
the general eqn (6) also holds in this system when the invariance
under a ‘‘solid rotation’’ of the texture without flow of matter, is
used. Note that the absence of flow of matter is sustained by recent
experiments of fluorescence recovery after photobleaching (FRAP)
in the vicinity of the droplets.31 In this case, s = Y – the angle of
solid rotation around the axis parallel to -

ez and passing through

the center of the droplet,
DT

DY
¼ �@T

@W
and

D~n

DY
¼~ez �~n�

@~n

@W
by

denoting by W the polar angle in cylindrical coordinates.
So far we only considered the role of the Leslie coupling.

In this case, our general formula gives in the linear regime and

by assuming that
-

G = G
-
ez is constant inside the droplet and by

neglecting the surface dissipation, which we expect to be very
small at the cholesteric–isotropic interface:

o ¼ dY
dt
¼ G

nLn þ �x1q0L1 þ �x2q0L2 þ �x3q0L3

g1Lg
(48)

with the dimensionless integrals

Lg ¼
1

V

ð
V

D~n0
DY

� �2

dV ; (49)

Ln ¼
1

V

ð
V

~n0 �~ezð Þ �D~n0
DY

dV ; (50)

L1 ¼
1

q0V

ð
V

~r �~n0
� �

~ez �
D~n0
DY

dV ; (51)
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L2 ¼
1

q0V

ð
V

~n0 � ~r�~n0
h i� �

~n0 �~ezð Þ �D~n0
DY

dV ; (52)

L3 ¼
1

q0V

ð
V

~n0 �~ezð Þ ~r�~n0
h i

�~n0
� �

�D~n0
DY

dV : (53)

In banded droplets for instance (‘‘banded’’ because of their
striped contrast under the microscope), in which the helical
axis is perpendicular to the temperature gradient, the cholesteric
layers are little deformed5,6 which means that the local twist is
close to q0. In this case, there are no splay nor bend deforma-

tions, so that L1 = L3 = 0 and L2 = � Ln since~n0 � ~r�~n0
h i

¼ �q0.

Then eqn (48) simplifies to

o ¼ �nGLn
g1Lg

; (54)

where �n = n � �x2q0 is the thermomechanical coefficient mea-
sured in the planar TIC (Leslie geometry). This is the formula
given in ref. 4.** From this formula and the measurements of the
rotation velocity of the droplets, a value of �n was obtained. The
problem is that this value is always much larger (by a factor of 10
in the compensated mixture to 1000 in the diluted mixtures)
than the value measured in the Leslie’s configuration. This
observation and the fact that the sign of the rotation velocity is
not always given by the sign of �n22 led us to the conclusion that
the Leslie coupling is not directly responsible for the Lehmann
rotation. On the other hand, in all cases, the sign of o is given by
the sign of q0.10,32 One possibility to explain this observation
would be that the helix is slightly deformed inside the droplets

and that thermomechanical coefficients �xi are responsible for
the rotation, even if the �n terms plays a negligible role. This
explanation is sustained by recent observations of the rotation of
twisted bipolar droplets observed in a chromonic nematic LC.20

In this case, n = 0 (we are dealing with a nematic phase), but the
director field inside the droplets is twisted because of the elastic
anisotropy of the phase (K2 { K1 and K3). In these conditions,

only the terms in �xi can lead to a rotation.
Another possibility would be that the terms proportional to

dF
dT

and
dW
dT

are responsible for the rotation. In this case, the

general formula gives:

oE ¼ �

Ð
V

dF
dT

@T

@W
dV þ

Ð
S

dW
dT

@T

@W
dS

g1Lg
(55)

As in the case of the finger drift, it appears that it is the
horizontal temperature gradient (more precisely its orthoradial
component), and not directly the vertical gradient, that is
responsible for the rotation. This component exists because
of the anisotropy of the thermal conductivities and must be

proportional to Ĝ. Another important point is that
@T

@W
changes

sign when q0 is changed to �q0. This model thus predicts that
the sense of rotation is given by the sign of q0, as observed

experimentally. For the moment, it is difficult to give the order
of magnitude of o because we do not know how F andW vary
with temperature in the coexistence zone. A specific study is
required to answer this question. On the other hand, the
previous equation shows that it should be possible to explain
the Lehmann rotation – both in cholesteric and nematic phases –
without introducing the thermomechanical terms.

6 Conclusion

To summarize, we have established a very general formula that
allows to calculate the drift velocity of a cholesteric texture subjected
to a temperature gradient. This formula applies if the backflow
effects are negligible. This is the case for the TIC textures described
in Section 3. In these three examples, the thermomechanical terms
are directly responsible for the rotation of the director. The theory
predicts that these textures do not rotate at the same velocity if the
nematic-like coefficients �xi are taken into account.

We then applied our general formula to the case of the
cholesteric fingers of the first type. These fingers are observed
in homeotropic samples and drift under the action of a tem-
perature gradient. We confirm that the drift observed in the
compensated mixtures close to the compensation temperature is
mainly due to the Leslie thermomechanical term. By contrast,
the thermomechanical terms cannot explain the drift observed
in diluted mixtures in the vicinity of a smectic A phase. For this
reason, we propose a new model based on the divergence of the
bend and twist elastic constants and on the existence of a
horizontal temperature gradient inside the fingers.

Finally, we applied our general formula to the Lehmann
droplets. We confirm that the Leslie thermomechanical cou-
pling cannot explain alone their rotation. On the other hand,
two alternatives could be envisaged if the director field inside
the droplets is distorted by the surface effects. The first
one involves the ‘‘texture-dependent’’ Akopyan and Zel’dovich
thermomechanical terms, while the second considers the tem-
perature variations of the elastic and (or) anchoring energy and
the existence of an orthoradial temperature gradient inside the
droplets.

For the time being, these new models which we propose for
the fingers and the Lehmann droplets are qualitative. To test
them and explicitly calculate the corresponding velocities,
numerical simulations of the director and temperature fields
are required. Systematic measurements of the thermomecha-
nical coefficients �xi would also be desirable, for instance by
using the results on the TICs, to determine whether their order
of magnitude is compatible with the observed velocities of the
Lehmann droplets. Such simulations and experiments are
planned in the future.

Appendix: equivalent expressions for
the thermomechanical force

The general expression of the thermomechanical force was first
given by Akopyan and Zel’dovich13 and was then derived more

** With �n replacing n since, in our previous publications, we neglected the �x2q0

contribution.
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rigorously by Pleiner and Brand.14,33 In this paper, we give a
different, but more physical form of

-

fTM. This form was derived
from an analogy with the terms in

-

h (denoted by
-

hrK) that come
from the spatial variations of the elastic constants. These
thermomechanical terms are responsible for a static distortion
of the texture, but do not contribute to the drift velocity of the
texture. A straightforward calculation gives:

~hrK ¼ ~r �~n
� �

~rK1 þ ~n � ~r�~n
� �

~n� ~rK2

� �

þ~n� ~r K2q0ð Þ þ ~n � ~rK3

� �
~r�~n
h i

�~n
� �

� ~r � ~rK4 �~n� ~rK4 �~n
h i

I
� �

(56)

by taking the elastic energy under the form

f ¼ 1

2
K1

~r �~n
� �2

þ1
2
K2 ~n � ~r�~n
� �2

þ1
2
K3 ~n� ~r�~n

h i� �2

� 1

2
K4
~r � ~r �~n

h i
~nþ~n� ~r�~n

h i� �
:

(57)

In this expression, the Ki’s are the splay (i = 1), twist (i = 2), bend
(i = 3) and saddle-splay (i = 4) Frank elastic constants.

The eqn (56) is equivalent to eqn (5) given in the body of the

paper on condition to replace the xi
-

G by ~rKi for i = 1. . .3 and v
-

G

by ~r K2q0ð Þ.
In their paper, Akopyan and Zel’dovich give the following

expression for the thermomechanical force:†† 13

~fTM ¼ �x1 þ
1

2
x3

� �
~r �~n
� �

~G

þ x2 ~n � ~r�~n
� �

~n� ~G

þ x3 � x4ð Þ ~n � ~G
� �

m �~n

� x3m � ~Gþ n~n� ~G;

(58)

with m
ij
¼ 1

2
ni; j þ nj;i
	 


. This expression is equivalent to our

eqn (5) with

�x1 ¼ �x1 �
1

2
x3

�x2 ¼ x2 �
1

2
x3

�x3 ¼ �
1

2
x4

�x4 ¼ �x3

�����������������

x1 ¼
1

2
�x4 � �x1

x2 ¼ �x2 �
1

2
�x4

x3 ¼ ��x4

x4 ¼ �2�x3

(59)

Brand and Pleiner pointed out a flaw in Akopyan and Zel’dovich
reasoning33 and gave the following expression for the

thermomechanical force:14

~fTM ¼ � g1 p1 ~r �~n
h i

~Gþ p2~r~n � ~Gþ p3 ~G � ~r
h i

~n
�

þ p4 � p3½ � ~n � ~G
h i

~n � ~r
h i

~n
� (60)

This expression is also equivalent to that of Akopyan and
Zel’dovich. The correspondence with our eqn (5) is obtained with

�x1 ¼ �g1 p1 þ p2 þ p3ð Þ

�x2 ¼ �g1p3
�x3 ¼ �g1p4
�x4 ¼ �g1 p2 þ p3ð Þ

p1 ¼
1

g1
�x4 � �x1
	 


p2 ¼
1

g1
�x2 � �x4
	 


p3 ¼ �
1

g1
�x2

p4 ¼ �
1

g1
�x3

��������������������

(61)
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